Studies of heavy metal content in bottom sediments and aquatic plants near treated wastewater discharge
##plugins.themes.bootstrap3.article.main##
Keywords
Abstrakt
The paper attempts to determine the degree of impact of discharged wastewater from five treatment plants on the Bug River ecosystem and its inflow, the Kamianka. For laboratory tests, samples of bottom sediments and aquatic plants were collected in 2014. The content of heavy metals: Zn, Pb, Ni in bottom sediments and aquatic plants (root, stem, leaf) growing close to the discharge of purified sewage, were analyzed. The amount of metals in the samples was determined applying the AAS method in its flame version. The average content of the metals determined in bottom sediments from the study points located before the treatment plant were Zn – 21.8; Pb – 11.5; Ni – 13.7 mg⋅kg−1. However, the content of these metals was higher in samples from the collection points which were located after the place of purified sewage discharge and amounted to: Zn – 34.3; Pb – 12.2; Ni – 16.9 mg⋅kg−1. The test plants were Acorus calamus L., Nuphar lutea L., Typha angustifolia L. The content of metals in the individual parts of macrophytes (root, stem, leaf) was as follows: Zn > Pb > Ni. In the bottom sediments and aquatic plants of the Bug and Kamianka rivers, a higher content of lead, zinc and nickel was found after the discharge of treated sewage in relation to their content than before discharge, but it was not a threat to the aquatic environment of the watercourses studied. Statistical analysis showed that the amount of sewage discharged to the tested receivers influenced the content of organic matter, zinc and nickel in bottom sediments.
##plugins.generic.usageStats.downloads##
Bibliografia
Albers P.H. & Camardese M.B., 1993. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands. Environmental Toxicology and Chemistry, 12, 6, 959–967.
Ali N.A., Bernal M.P. & Ater M., 2004. Tolerance and bioaccumulation of cadmium by Phragmitesaustralis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquatic Botany, 80, 163–176.
Banach M. & Chlost I., 2005. Zbiornik Krzynia jako basen sedymentacyjny rzeki Słupi. [in:] Kotarba A., Krzemień K. & Święchowicz I. (red.), Współczesna ewolucja rzeźby Polski: VII Zjazd Geomorfologów Polskich, Kraków, 19–22 września 2005, Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, Kraków, 27–32.
Banerjee U.S. & Gupta S., 2013. Impact of industrial waste effluents on River Damodar adjacent to Durgapur industrial complex, West Bengal, India. Environmental Monitoring and Assessment, 185, 2083–2094.
Bielski A., 2012. Wpływ zrzutu nieoczyszczonych ścieków na środowisko wodne cieku. Inżynieria i Ochrona Środowiska, 15, 2, 119–142.
Bojakowska I. & Sokołowska G., 1998. Charakterystyka geochemiczna aluwiów głównych rzek Polski. Przegląd Geologiczny, 1, 16–20.
Bojakowska I., 2001. Kryteria oceny zanieczyszczenia osadów wodnych. Przegląd Geologiczny, 49, 3, 213–218.
Brack K., Johannesson L. & Stevens R., 2001. Accumulation rates and mass calculations of Zn and Hg in recent sediments, Götaälv estuary, Sweden. Environmental Geology, 40, 1232–1241.
Cardwell A.J., Hawker D.W. & Greenway M., 2002. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653–663.
Ciszewski D. & Aleksander-Kwaterczak U., 2015. Zanieczyszczenie osadów metalami: transport, akumulacja, remobilizacja, remediacja. Wydawnictwa AGH, Kraków, 1–165.
Cyprowski M. & Krajewski J., 2003. Czynniki szkodliwe dla zdrowia występujące w oczyszczalniach ścieków komunalnych. Medycyna Pracy, 54, 1, 73.
Djingova R., Kuleff I. & Markert B., 2004. Chemical fingerprinting of plants. Ecological Research, 19, 1, 3–11. DOI: 10.1111/j.1440-1703.2003.00602.x.
Donahue R., Hendry M. & Landini P., 2000. Distribution of arsenic and nickel in uraniom mill tailings, Rabbit Lake, Saskatchewan, Canada. Applied Geochemistry, 15, 1097–1119. DOI: 10.1016/S0883-2927(99)00114-6.
Dou Y., Li J., Zhao J., Hu B. & Yang S., 2013. Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Marine Pollution Bulletin, 67, 1, 137–145.
Dusza E. & Zabłocki Z., 2009. Zmienność zawartości miedzi i niklu w ściekach surowych z miejskiej oczyszczalni ścieków w Reczu. Zeszyty Problemowe Postępów Nauk Rolniczych, 540, 329–336.
Essien J.P., Antai S.P. & Olajire A.A., 2009. Distribution, Seasonal Variations and Ecotoxicological Significance of Heavy Metals in Sediments of Cross River Estuary Mangrove Swamp. Water, Air, & Soil Pollution, 197, 91–105. DOI: 10.1007/s11270-008-9793-x
Förstner U. & Wittmann G.T.W., 1981. Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin.
Harguinteguy C.A., Schreiber R. & Pignata M.L., 2013. Myriophyllumaquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Cordoba, Argentina). Ecological Indicators, 27, 8–16.
Harguinteguy C.A., Fernandez Cirelli A. & Pignata M.L., 2014. Heavy metal accumulation in leaves of aquatic plant Stuckeniafiliformis and its relationship with sedyment and water in the Suquia River (Argentina). Microchemical Journal, 114, 111–118.
Hu B., Li G., Li J., Bi J., Zhao J. & Bu R., 2013. Spatial distribution and ecotoxicological risk assessment of heavy metals in surface sediments of the southern Bohai Bay, China. Environmental Science and Pollution Research, 20, 6, 4099–4110. DOI: 10.1007/s11356-012-1332-z.
Jeelani N., Zhu Z., Wang P., Zhang P., Song S., Yuan H., An S. & Leng X., 2017. Assessment of Trace Metal Contamination and Accumulation in Sediment and Plants of the Suoxu River, China. Aquatic Botany, 140, 92–95.
Kabata-Pendias & Pendias A., 1999. Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa.
Klumpp A., Bauer K., Franz-Gerstein C. & Menezes M., 2002. Varation of nutrient and metal concentration in aquatic macrophytes along the Rio Cachoeria in Bahia (Brazil). Environmental International, 28, 165–171.
Kucuksezgin F., Uluturhan E. & Batki H., 2008. Distribution of heavy metals in water, particulate matterand sediments of Gediz River (Eastern Aegean). Environmental Monitoring and Assessment, 141, 213–225.
Lin Y.X., Zhang X.M., 1990. Accumulation of heavy metals and the variation of amino acids and protein in Eichhorniacrassipes (Mart.) Solms in the Dianchi Lake. Oceanologia et Limnologia Sinica, 21, 179–184.
Lindström M., 2001a. Mercury in sediment and fish communities of Lake Vanern, Sweden: recovery from contamination. AMBIO: A Journal of the Human Environment, 30, 8, 538–544.
Lindström M., 2001b. Urban land use influences on heavy metals fluxes and surface sediment concentrations of small lakes. Water, Air, & Soil Pollution, 126, 3–4, 363–383.
Lis J. & Pasieczna A., 1995. Atlas geochemiczny Polski w skali 1: 2 500 000. Państwowy Instytut Geologiczny, Warszawa.
Liu J.N., Zhou Q.X., Sun T., Ma L.Q. & Wang S., 2008. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials, 151, 261–267.
Liu J., Li Y., Zhang B., Cao J., Cao Z. & Domagalski J., 2009. Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology. 18, 748–758.
Markert B., 1992. Presence and significance of naturally occurring chemical elements of the periodic system in the plant organism and consequence for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio, 103, 1, 1–30.
Mecray E.L., King J.W., Appleby P.G. & Hunt A.S., 2001. Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain Watershed, Burlington, Vermont. Water, Air & Soil Pollution, 125, 1 –4, 201 –230.
Migaszewski Z.M. & Gałuszka A., 2007. Podstawy geochemii środowiska. WNT, Warszawa.
Müller G., 1979. Schwermetalle in den sediments des Rheins-Veranderungenseitt 1971. Umschau, 79, 24, 778–783.
Nocoń W., 2006. Zawartość metali ciężkich w osadach dennych rzeki Kłodnicy. Instytut Podstaw inżynierii Środowiska w PAN w Zabrzu. Journal of Elementology, 11, 4, 457–466.
Olivares-Rieumont S., Rosa D., Lima L., Graham D.W., Alessandro K.D., Borroto J., Martinez F. & Sanchez J., 2005. Assessment of heavy metal levels in Almendares River sediments – Havana City, Cuba. Water Research, 39, 3945–3953.
Pradip K. Maurya D. & Malik S., 2016. Distribution of heavy metals in water, sediments and fish tissue (Heteropneustisfossilis) in Kali River of western U.P. India. International Journal of Fisheries and Aquatic Studies, 4, 2, 208–215.
Raza A., Farooqi A., Javed A. & Ali W., 2016. Distribution, enrichment, and Skurceidntification of selected heavy metals in surface sediments of the Siran River, Mansehra, Pakistan. Environmental Monitoring and Assessment, 188, 572.
Rozporządzenie, 2014. Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego. Dz.U. 2014, poz. 1800.
Rutherford J.C., 1994. River Mixing. John Wiley & Sons, Chichester.
Samecka-Cymerman A. & Kempers A.J., 2007. Heavy Metals in Aquatic Macrophytes from Two Small Rivers Polluted by Urban, Agricultural and Textile Industry Sewages SW Poland. Archives of Environmental Contamination and Toxicology, 53, 2, 198–206.
Skorbiłowicz E., 2012. Studia nad rozmieszczeniem niektórych metali w środowisku wodnym zlewni górnej Narwi. Rozprawy Naukowe – Politechnika Białostocka, 222, Oficyna Wydawnicza Politechniki Białostockiej, Białystok.
Skorbiłowicz E., 2014. Macrophytes as indicators of heavy metals bio-accumulation in upper Narew River. Ecological Chemistry and Engineering. A, 21, 1, 87–98. DOI: 10.2428/ecea.2014.21(1)9.
Skorbiłowicz M., Skorbiłowicz E., Wójtowicz P. & Zamojska E., 2017. Determination of mixing zones for waste-water with receiver waters. Journal of Ecological Engineering, 18, 4, 192–198.
Sundaray K.S., Nayak B.B., Lin S. & Bhatta D., 2011. Geochemical speciation and risk assessment of heavy metals in the River estuarine sediments – A case study: Mahanadi basin, India. Journal of Hazardous Materials, 186, 1837–1846.
Szoszkiewicz K., Jusik S. & Zgoła T., 2010. Klucz do oznaczania makrofitów dla potrzeb oceny stanu ekologicznego wód powierzchniowych. Wyd. 2 zm. Biblioteka Monitoringu Środowiska, Inspekcja Ochrony Środowiska, Warszawa.
Tian S., Wang Z. & Shang H., 2011. Study on the Self-purification of Juma River. Procedia Environmental Sciences, 11, 1328–1333.
Turekian K.K. & Wedepohl K.H., 1961. Distribution of the Elements in some major units of the Earth’s crust. Geological Society of America Bulletin, 72, 175–192.
Wang J., Liu R., Zhang P., Yu W., Shen Z. & Feng C., 2014. Spatial variation, environment al assessment and source identification of heavy metals in sediments of the Yangtze River estuary. Marine Pollution Bulletin, 87, 364–373.
Xu Y., Sun Q., Yi L., Yin X., Wang A., Li Y. & Chen J., 2014. The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River estuary (SE China): implications for historical pollution. Science of the Total Environment, 493, 729–736.
Yadav R.K., Goyal B., Sharma R.K., Dubey S.K. & Minhas P.S., 2002. Post-irrigation impact of domestic sewage effluent on composition of soils, crops and ground water – A case study. Environment International, 28, 481–486.
Yang Z., Wang Y., Shen Z., Niu J. & Tang Z., 2008. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangze River catchment of Wuhan, China. Journal of Hazardous Materials, 166, 2–3, 1186–1194.
Zhang W., Feng H., Chang J., Qu J., Xie H. & Yu L., 2009. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environmental Pollution, 157, 1533–1543.