Metals in organs of bottom sediments and aquatic plants of the Ełk River and its tributaries

Main Article Content

Elżbieta Skorbiłowicz
Mirosław Skorbiłowicz
Emilia Zamojska
Paulina Wójtowicz

Keywords

river, metals, bottom sediments, aquatic plants

Abstract

The aim of the work was to analyze the content of Ni, Pb and Cd in organs (root, stem, leaf) Typha latifolia L. and Nuphar lutea as well as bottom sediments of the Ełk River and selected tributaries. An attempt was also made to indicate the factors and processes governing the behavior of the investigated metals in the water environment of the examined rivers. The research object was the Ełk River with its three tributaries - the Gawlik River, the Binduga River and the Kuwasy Canal. Samples of bottom sediments, leaves, stems and roots of Typha latifolia L. and Nuphar lutea were collected in August of 2015. The content of metals was determined by flame atomic absorption spectrometry (F-AAS). The results of analyses of sediments and plant material indicate a lack of environmental pollution by nickel (2.58-8.50 mg-kg-1) and lead (3.82-15.99 mg-kg-1) of the Ełk River and its tributaries whereas the cadmium content ranged from 0.16-0.76 mg-kg-1. Nuphar lutea and Typha latifolia L. showed a varied capacity to accumulate nickel (1.20-10.51 mg-kg-1) and lead (0.04-14.16 mg-kg-1), occurring primarily in the roots. The smallest concentration of nickel and lead was recorded in the stems. The highest concentration of cadmium (2.56 mg-kg-1) was noted in the roots and the lowest (0.01 mg-kg) in the leaves. Factor analysis pointed to the processes of mobilizing elements from bottom sediments as a result of pH drop and their uptake by macrophyte roots and sorption processes of metal ions by macrophytes from river waters and their intensive accumulation in bottom sediments.

Downloads

Download data is not yet available.
Abstract 421 | PDF Downloads 283

References

Ali I. & Jain C.K., 2001. Pollution potential of toxic metals in the Yamuna river at Delhi, India. Journal of Environmental Hydrology, 12, 9, 1-9.
Baldantoni D., Maisto G., Bartoli G. & Alfami A., 2005. Analyses of three native aquatic plant species to assess spatial gradients of lake trace element contamination. Aquatic Botany, 83, 48-60.
Baldantoni D., Alfani A., Di Tommasi P., Bartoli G. & De Santo A., 2004. Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 130, 149-156.
Bielski A., 2012. Wpływ zrzutu nieoczyszczonych ścieków na środowisko wodne cieku. Inżynieria i Ochrona Środowiska, 15(2), 119-142.
Bojakowska I., 2001. Kryteria oceny zanieczyszczenia osadów wodnych. Przegląd Geologiczny, 49(3), 213-218.
Bonanno G. & Lo Giudice R., 2010. Heavy metal bioaccumulation by the organs of Phragmites Australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639-645.
Bonanno G. & Vymazal J., 2017. Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation. Journal of Geochemical Exploration, 181, 22-30.
Bragato C., Brix H. & Malagoli M., 2006. Accumulation of nutrients and heavy metals in Phragmites australis (cav.) trin. ex steudel and Bolboschoenus maritimus (l.) palla in a constructed wetland of thevenice lagoon watershed. Environmental Pollution, 144, 967-975.
Cardwell A.J., Hawker D.W. & Greenway M., 2002. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere, 48, 653-663.
Choiński A., Ditta J.B. & Ławniczak A.E., 2010. Ocena stanu zanieczyszczenia Cu, Zn, Pb i Cd osadów dennych Jeziora Niepruszewskiego. [in:] Ciupa T. & Suligowski R. (red.), Woda w badaniach geograficznych, Instytut Geografii Uniwersytetu Humanistyczno-Przyrodniczego Jana Kochanowskiego, Kielce, 159-167.
Dąbrowska J. & Lejcuś K., 2012. Charakterystyka osadów dennych zbiornika Dobromierz. Infrastruktura i Ekologia Terenów Wiejskich, 3(IV/2), 89-98.
Demirak A., Yilmaz F., Levent Tuna A. & Ozdemir N., 2006. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere, 63, 1451-1458.
Deng H., Ye Z.H. & Wong M.H., 2004. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29-40.
Dong D.M., Li H.L., Li Y., Fang C.S., Li X.H. & Xu C.Y., 2004. Distribution of heavy metals in the sediments from the Yitong River: Changchun Section. Research of Soil and Water Conservation, 11(1), 95-96, 136.
Fediuc E. & Erdei L., 2002. Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. Journal of Plant Physiology, 159, 265-271.
Fritioff A. & Greger M., 2006. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere, 63, 220-227.
Głosińska G. & Siepak J., 2007. Zanieczyszczenie środkowej i dolnej Odry wybranymi metalami ciężkimi w latach 1991-2005 na podstawie wyników monitoringu geochemicznego osadów dennych. Rocznik Ochrona Środowiska, 9, 167-182.
Gundersen P. & Steinnes E., 2001. Influence of temporal variations in river discharge, pH, alkality and Ca on the speciation and concentration of heavy metals in some mining polluted rivers. Aquatic Geochemistry, 7, 173-193.
Hakanson L., 1980. An ecological risk index for aquatic pollution control - a sedimentological approach. Water Research, 14, 975-1101.
Hanif N., Shah Eqani S., Ali S.M., Cincinelli A., Ali N., Katsoyiannis I.A., Tanveer Z.I. & Bokhari H., 2016. Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan. Journal of Geochemical Exploration, 165, 62-70.
Harada E., Hhoi Y.E., Tsuchisaka A., Obata H. & Sano H., 2001. Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. Journal of Plant Physiology, 158(5), 655-661.
Harguinteguy C.A., Cirelli A.F. & Pignata L.M., 2014. Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquia river (Argentina). Microchemical Journal, 114, 111-118.
Hejabi A.T. & Basavarajappa H.T., 2013. Heavy metals partitioning in sediments of the Kabini River in South India. Environmental Monitoring and Assessment, 185, 1273-1283.
Huang K.M. & Lin S., 2003, Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere, 53, 1113-112.
Ibragimow A., Głosińska G., Siepak M. & Walna B., 2010. Heavy metals in sediments of the Odra river flood-plains-introductory research. Geography Quest, 29/1, 37-47.
Kabata-Pendias A. & Pendias H., 1999. Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa.
Klavins M., Briede A., Rodinov V., Kokorite I., Parele E. & Klavina I., 2000. Heavy metals in rivers of Latvia. Science of the Total Environment, 262, 1-2, 175-183.
Królak E., Korycińska M., Diadik K. & Godziuk S., 2011. Czy lokalne oczyszczalnie ścieków wpływają na jakość wód w ich odbiornikach. Ochrona Środowiska i Zasobów Naturalnych, 48, 343-352.
Lis J. & Pasieczna A., 1995. Atlas geochemiczny Polski 1:2 500 000. Państwowy Instytut Geologiczny, Warszawa.
Mazej Z. & Germ M., 2009. Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere, 74, 642-647.
Melville F. & Pulkownik A., 2007. Investigation of mangrove macroalgae as biomonitors ofestuarine metal contamination. Science of the Total Environment, 387, 1-3, 301-309.
Morales-Garcia S.S., Rodriguez-Espinosa P.F., Shruti V.C., Jonathan M.P. & Martinez-Tavera E., 2017. Metal concentrations in aquatic environments of Puebla River basin, Mexico: natural and industrial influences. Environmental Science and Pollution Research, 24, 2589-2604.
Muller G., 1979. Schwermetalle in den sedimenten des Rheins-Veranderungen seitt. Umschau, 79, 778-783.
Olivares-Rieumont S., De La Rosa D., Lima L., Graham D.W., D’Alessandro K., Borroto J. et al., 2005. Assessment of heavy metal levels in Almendares river sediments - Havana City, Cuba. Water Research, 39, 16, 3945-3953.
Rabajczyk A. & Jóźwiak M.A., 2008. Możliwości wykorzystania makrofitów jako bioindykatorów metali ciężkich zdeponowanych w osadach dennych. Monitoring Środowiska Przyrodniczego, 9, 19-26.
Rainbow P.S. & Phillips D.J.H., 1993. Cosmopolitan biomonitors of trace metals. Marine Pollution Bulletin, 26, 11, 593-601.
Samecka-Cymerman A. & Kempers A.J., 2004. Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotoxicology and Environmental Safety, 59, 64-69.
Shen Z.J., Xua D.C., Chena Y.S. & Zhang Z., 2017. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Ecotoxicology and Environmental Safety, 143, 19-27.
Shrestha S. & Kazama F., 2007. Assessment of surface water quality using multivariate statistical techniques: a case study of the fuji river basin, japan. Environmental Modelling & Software, 22, 4, 464-475.
Singh K.P., Malik A., Sinha S., Singh V.K. & Murthy R., 2005. Estimation of source of heavy metal contamination in sediments of Gomti river (India) using principal component analysis. Water, Air, &Soil Pollution, 166, 321-341.
Skorbiłowicz E., 2014. Assessment of heavy metals contents in bottom sediments of Bug river. Journal of Ecological Engineering, 15, 3, 82-89.
Skorbiłowicz E., Skorbiłowicz M. & Malinowska D., 2016. Accumulation of heavy metals in organs of aqueous plants and its association with bottom sediments in Bug river (Poland). Journal of Ecological Engineering, 17, 4, 295-303.
Sojka M., Siepak M. & Gnojska E., 2013. Ocena zawartości metali ciężkich w osadach dennych wstępnej części zbiornika retencyjnego Stare Miasto na rzece Powie. Ochrona Środowiska, 15, 1916-1928.
Stoltz E. & Greger M., 2002. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47, 271-280.
Swennen R. & Van der Sluys J., 2002. Anthropogenic impact on sediment composition and geochemistry in vertical overbank profiles of river alluvium from Belgium and Luxembourg. Journal of Geochemical Exploration, 75, 93-105.
Szarek-Gwiazda E., 2013. Czynniki kształtujące stężenia metali ciężkich w rzece rabie i niektórych karpackich zbiornikach zaporowych. Instytut Ochrony Przyrody PAN, Kraków.
Szydłowski K. & Podlasińska J., 2016. Stężenia wybranych metali ciężkich w osadach dennych cieku wodnego. Infrastruktura i Ekologia Terenów Wiejskich, I/1, 2016, 59-71.
Turekian K.K. & Wedepohl K.H., 1961. Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72, 175-182.
Weis J.S. & Weis P., 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30, 685-700.
Wojtkowska M., 2014. Heavy metals in water, sediments and plants of the Zegrzyński Lake. Progress in Plant Protection, 54, 1, 95-101.
Xiaolei Z., Baoqing S., Wenzhong T., Shanshan L. & Nan R., 2016. Distributions, fluxes and toxicities of heavy metals in sediment pore water from tributaries of the Ziya River system, northern China. Environmental Science and Pollution Research, 23, 6, 5516-5526.
Zhao Y., Marriott S., Rogers J. & Iwugo K.,1999. A preliminary study of heavy metal distribution on the floodplain of the River Severn, UK by a single flood vent. Science of the Total Environment, 243/244, 219-231.
Zurayk R., Sukkariah B. & Baalbaki R., 2001. Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water, Air and Soil Pollution, 127, 373-388.

Most read articles by the same author(s)