Attempts to calculate the pseudo-anisotropy of elastic parameters of shales gas formations based on well logging data and their geostatistical analysis

Main Article Content

Maria Bała
Adam Cichy http://orcid.org/0000-0002-1273-789X
Monika Wasilewska-Błaszczyk http://orcid.org/0000-0003-0042-9782

Keywords

anisotropy parameters, P and S velocities, Baltic Basin, shale gas formation, acoustic dipole tool, semivariogram

Abstract

This paper presents the attempts to calculate the pseudo-anisotropy of elastic parameters for the Silurian and Ordovician shale formations of several wells located in the Baltic basin. For this purpose, well-logging data were used, in particular data recorded with acoustic dipole tools. With the P and S waves velocities available, measured at the dipole setting in two orthogonal directions XX or YY (SFast and SSlow), the elastic ε and γ parameters were calculated. In this paper we evaluate the effect of different factors e.g., porosity, clay and kerogen con-tent on the velocity of anisotropy shale gas formations. A geostatistical analysis of elastic and reservoir properties was carried out in order to determine the character of the variability of Silurian and Ordovician shale formations in all of the studied wells. Semivariograms for each well characterizing the variation of elastic parameters in the vertical direction were calculated.

Downloads

Download data is not yet available.
Abstract 367 | PDF Downloads 271

References

Allan A.M., Kanitpanyacharoen W. & Vanorio T., 2015. A multiscale methodology for the analysis of velocity anisotropy in organic-rich shale. Geophysics, 80, 4, c73–c88, DOI: 10.1190/geo2014-0192.1.
Bandyopadhyay K., 2009. Seismic anisotropy: Geological causes and its implications to reservoir geophysics. Stanford University [Ph.D. thesis].
Bała M. & Cichy A., 2005. Comparison of P- and S-waves velocities estimated from Biot-Gassmann and Kus-ter-Toksöz models with results obtained from acoustic wavetrains interpretation. Acta Geophysica, 55, 2, 222–230.
Bała M. & Cichy A., 2006. Metody obliczania prędkości fal P i S na podstawie modeli teoretycznych i danych geofizyki otworowej – program ESTYMACJA [Methods of calculating P and S waves velocities as a function based on theoretical models and well logging data – Programme ESTYMACJA]. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
Bała M., 2007. Wpływ obecności iłów, porowatości oraz nasycenia porów wodą i gazem na parametry sprężyste skał zbiornikowych określanych na podstawie teoretycznych modeli ośrodków porowatych i danych geofizyki wiertniczej [Effects of shale content, porosity and water- and gas-saturation in pores on elastic parameters of reservoir rocks based on theoretical models of porous media and well-logging data. Przegląd Geologiczny, 55, 1, 46–53.
Bała M., 2009. Badanie wpływu anizotropii i zailenia na prędkości rozchodzenia się fal podłużnych i poprzeczych oraz innych parametrów sprężystych skał klastycznych [Study of the effect of anisotropy and shaliness on velocities of longitudinal and shear waves and other elastic parameters of clastic rocks]. Geologia: kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 35, 2/1, 559–566.
Bała M., 2011. Evaluation of electric parameters of anisotropic sandy-shaly Miocene formations on the basis of resistivity logs. Acta Geophysica, 59, 5, 954–966, DOI: https://doi.org/10.2478/s1160 0 - 011- 0 033-1.
Bała M. & Cichy A., 2015. Evaluating Electrical Anisotropy Parameters in Miocene Formations in the Cierpisz Deposit. Acta Geophysica, 63, 5, 1296–1315.
Banik N.C., 1987. An effective anisotropy parameter in transversely isotropic media. Geophysics, 52 , 12 , 1654 –166 4.
Bayuk I.O., Ammerman M. & Chesnokov E.M., 2007. Elastic modul of anisotropic clay. Geophysics, 72, 5, D107–D117. DOI: https://doi.org/10.1190/1.2757624.
Bleinès C., Bourges M., Deraisme J., Geffroy F., Jeannée N., Lemarchand O., Perseval S., Rambert F., Renard D., Touffait Y. & Wagner L., 2016. Isatis Technical References. Geovariances.
Carcione J.M., Helle H.B. & Avseth P., 2011. Source-rock seismic-velocity models: Gassmann versus Backus. Geophysics, 76, 5, N37–N45. DOI: 10.1190/geo2010-0258.1.
Castagna J.P., Batzle M.E. & Eastwood R.L., 1985. Relation-ship between the compressional-wave and shearwave velocities in clastic silicate rocks. Geophysics, 50, 4, 571–581.
Deutsch C.V., 2002. Geostatistical Reservoir Modeling. Ox-ford University Press, New York.
Eastwood R.L. & Castagna J.P., 1983. Basic for interpretation of Vp/Vs ratios in complex lithologies. [in:] Transactions of the SPWLA 24th Annual Logging Symposium, June 27–30, Calgary, Alberta, Society of Professional Well Log Analysts, paper G, 1–18.
Han D.H., Nur A. & Morgan D., 1986. Effects of porosity and clay content on wave velocities in sandstones. Geophysics, 51, 11, 2093–2107.
Hornby B.E., Schwartz L.M. & Hudson J.A., 1994. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics, 59, 10, 1570–1583.
Horne S., Walsh J. & Miller D., 2012. Elastic anisotropy in the Haynesville Shale from dipole sonic data. First Break,30, 37–41.
Isaaks E.H. & Srivastava R.M., 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York.
Isatis, 2017. Software: www.geovariances.com.
Johnston J.E. & Christensen N.I., 1995. Seismic anisotropy of shales. Journal of Geophysical Research, 100, B4, 5991–6003. DOI: 10.1029/95JB00031.
Katahara K.W., 1996. Clay mineral elastic properties. [in:] 1996 SEG Annual Meeting, 10–15 November, Denver, Colorado, Society of Exploration Geophysicists, 1691–1694.
Li Y., 2004. Anisotropic Parameter Prediction in Clastic Rocks. CSEG National Convention Great Explorations, Canada and Beyond.
Li Y., 2006. An empirical method for estimation of anisotropic parameters in clastic rocks. The Leading Edge, June, 706 –711.
Marion D., Nur A. & Han D.H., 1992. Compressional velocity and porosity in sand-clay mixtures. Geophysics, 52, 4, 554–563.M
Matheron G., 1962. Traité de géostatistique appliquée. Tome 1. Mémoires du BRGM (Paris), 14, Éditions Technip, Paris.
Matheron G., 1963. Traité de géostatistique appliquée. Tome 2. Mémoires du BRGM (Paris), 24, Éditions Technip, Paris.
Mavko G., Mukerji T. & Dvorkin J., 2009. Rock Physics Handbook: Tools for Seismic Analysis in Porous Media. 2nd ed. Cambridge University Press, Cambridge.
Mondol N., Jahren J., Bjorlykke K. & Brevik I., 2008. Elastic properties of clay minerals. The Leading Edge, 27, 6758–6770.
Mucha J. & Wasilewska-Błaszczyk M., 2012. Variability anisotropy of mineral deposits parameters and its impact on resources estimation – a geostatistical approach. Gospodarka Surowcami Mineralnymi, 28, 4, 113–135. DOI: 10.2478/v10269-012-0037-8.
Prasad M., Kopycinska M., Rabe U. & Arnold W., 2002. Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophysical Research Letters, 29, 8, 13-1–13-4.
Ryan-Grigor S., 1997. Empirical relationships between transverse isotropy parameters and Vp/VS: implications for AVO. Geophysics, 62, 5, 1359–1364.
Sato H., Ono K., Johnston C.T. & Yamagishi A., 2005. First-principles studies on elastic constants of a 1:1 layered kaolinite mineral. American Mineralogist, 90, 11–12, 1824–1826.
Sayers C.M., 2005. Seismic anisotropy of shales. Geophysical Prospecting, 53, 667–676.
Sayers C.M., 2013. The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics, 78, 2, D65–D74. DOI: 10.1190/geo2012-0309.1.
Sondergeld C.H. & Rai C.S., 2011. Elastic anisotropy of shales. The Leading Edge, 30, 3, 324–331.
Sone H. & Zoback M.D., 2013. Mechanical properties of shale gas reservoir rocks, Part 1: Static and dynamic elastic properties and anisotropy. Geophysics, 8, 5, D381–D392. DOI: 10.1190/geo2013-0050.1.
Schlumberger, 1991. Log Interpretation Charts. Schlumberger Educational Services.
Stach A., 2009. Analiza struktury przestrzennej i czasoprzestrzennej maksymalnych opadów dobowych w Polsce w latach 1956–1980 [Analysis of the spatial and spatial-temporal structure of maximum daily precipitation in Poland in the years 1956–1980]. Seria Geografia, 85, Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, Poznań.
Thomsen L., 1986. Weak elastic anisotropy. Geophysics, 51, 10, 1954–1966. DOI: 10.1190/1.1442051.
Vanorio T., Mukerji T. & Mavko G., 2008. Emerging methodologies to characterize the rock physics properties of organic-rich shales. The Leading Edge, 27, 780–787, DOI: 10.1190/1.2944163.
Vernik L. & Nur A., 1992. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics, 57, 5, 727–735. DOI: 10.1190/1.1443286.
Vernik L. & Liu X., 1997. Velocity anisotropy in shales: A petrophysical study. Geophysics, 62, 521–532.
Wang Z., 2002. Seismic anisotropy in sedimentary rocks, part 2,laboratory data. Geophysics, 67, 1423–1440. DOI: 10.1190/1.1512743.
Wang Z., Wang H. & Cates M.E., 2001. Effective elastic properties of solid clays. Geophysics, 66, 428–440.
Wenk H.R., Voltolini M., Mazurek M., Von Loon L.R. & Vinsot A., 2008. Preferred orientation and anisotropy in shales: Callovo-Oxfordian shale France and Opalinus Clay Switzerland. Clays and Clay Minerals, 56, 285–306.
Tosaya C.A., 1982. Acoustic properties of clay-bearing rocks. Stanford University, Stanford [Ph.D. Thesis].
Zalewska J., Sikora G. & Gąsior I., 2009. Laboratoryjne badania anizotropii sprężystych właściwości skał [Laboratory studies of anisotropy elastic properties of rocks]. Nafta-Gaz, 65, 9, 669–677.
Zhao L., Qin X., Han D.H., Geng J., Yang Z. & Cao H., 2016. Rock-physics modeling for the elastic properties of organic shale at different maturity stages. Geophysics, 81, 5, D527–D541. DOI: 10.1190/GEO2015-0713.1.
Zhang F., Li X.-Y. & Qian K., 2017.Estimation of anisotropy parameters for shale based on an improved rock physics model, part 1: theory. Journal of Geophysics and Engineering, 14, 143 –158.
Zhu F., Gibson R.L. & Estil R., 2001. A critical clay content model of sand-shale mixtures from log data in the Gulf of Thailand. [in:] SEG Technical Program Expanded Abstracts 2001, Society of Exploration Geophysicists, 1720–1723.