Comparative analysis of Helix pomatia L. shells found in soils with varying degrees of contamination (southern Poland)

Main Article Content

Urszula Aleksander-Kwaterczak
Magdalena Gołas-Siarzewska

Keywords

Helix pomatia, shell, metals, bioaccumulation, soil contamination

Abstract

Soil samples and snails - Helix pomatia (Linnaeus, 1758) specimens were collected from the region of Lesser Poland. Research based on soil from this area showed a differentiated degree of environmental contamination, which influenced the composition of elements that build mollusc shells. Concentrations of Pb, Mn, Cd, Fe, Zn and Cu in the snail shells and soil varied between localities. The highest of these concentrations were found in the soil in the city of Cracow. They were higher than those measured in the regions outside the city, 7 times in the case of Cd, and up to 123 times higher for Cu. Positive association between soil pollution and shell contamination can be observed (rs≈0.9). A high concentration of metals in the environment and their bioavailability causes long-term accumulation of these elements in Helix pomatia shells.

Downloads

Download data is not yet available.
Abstract 467 | PDF Downloads 318

References

Adis J. & Junk W.J., 2002. Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biology, 47(4), 711–731.

Aleksander-Kwaterczak U. & Ciszewski D., 2012. Zanie-czyszczenie gleb na obszarze historycznej eksploatacji rud Zn-Pb (rejon Lgoty). Górnictwo i Geologia, 7(2), 23–33.

Aleksander-Kwaterczak U. & Rajca A., 2015. Urban soil contamination with lead and cadmium in the playgrounds located near busy streets in Cracow (South Poland). Geology, Geophysics & Environment, 41(1), 7–16.

Aleksander-Kwaterczak U., Mazurek M. & Wardas M., 2009. The use of physicochemical and biological quality elements for the determination of aquatic environment quality as shown by the example of watercourses in the surroundings of the Żelazny Most flotation tailings pond. Polish Journal of Environmental Studies, 18(2), 56–63.

Alexandrowicz S.W., 1990. The malacofauna of dumps of the soda factory in Cracow. Folia Malacologica, 4, 25–37.

Alexandrowicz S.W. & Alexandrowicz W.P., 2010. Expansive migration of molluscs during the historic period. Biological Invasions in Poland, 23–48.

Alexandrowicz S.W. & Szulc J., 1984. Holoceńskie martwice w dolinie Racławki. [in:] Holocen okolic Krakowa: materiały sympozjum, Kraków, 18–20 czerwca 1984 r., AGH, Kraków, 84–93.

Alexandrowicz W.P., 2004. Molluscan assemblages of Late Glacial and Holocene calcareous tufa in Southern Poland. Folia Quaternaria, 75, 3–309.

Beeby A. & Richmond L., 2002. Evaluating Helix aspersa as a sentinel for mapping metal pollution. Ecological Indicators, 1, 261–270.

Dallinger R. & Wieser W., 1984. Patterns of accumulation, distribution and liberation of Zn, Cu, Cd and Pb in different organs of the land snail Helix pomatia L. Comparative Biochemistry and Physiology part C: Comparative Pharmacology, 79, 117–124.

Dallinger R., Berger B., Triebskorn-Köhler R. & Köhler H., 2001. Soil biology and ecology. [in:] Barker G. (ed.), Biology of Terrestrial Mollusk, Cabi Publishing, Cambridge, 489–524.

Digby P.S.B., 1968. The mechanism of calcification in the molluscan shell. [in:] Fretter V. (ed.), Studies in the Structure, Physiology and Ecology of Molluscs, Academic Press, London & New York, 93–108.

Frömming E., 1954. Biologie der mitteleuropäischen Landgastropoden. Duncker & Humblot, Berlin.

Gärdenfors U., Bignert A., Carell B., Forberg S., Mutvei H. & Westermark T., 1996. Elemental composition of same snail shells (Mollusca, Gastropoda) and observations of environmental interest. [in:] Biomineralization 93: 7th International Symposium on Biomineralization, Monaco, 17–20 November 1993, Musée Océanographique, Monaco, 432.

Gimbert F., de Vaufleury A., Douay F., Scheifler R., Coeur dassier M. & Badot P. M., 2006. Modelling chronic ex posure to contaminated soil: A toxicokinetic approach with the terrestrial snail Helix aspersa. Environment International, 32, 866–875.

Gomot-de Vaufleury A., 2000. Standardized Growth Toxicity Testing (Cu, Zn, Pb and Pentachlorophenol) with Helix aspersa. Ecotoxicology and Environmental Safety, 46, 41–50.

Grodzinska K., Godzik B., Darowska E. & Pawlowska B., 1987. Concentration of heavy metals in trophic chains of Niepolomice Forest. Ekologia Polska, 35(2), 327–344.

Gupta S.K. & Singh J., 2011. Evaluation of mollusc as sensitive indicator of heavy metal pollution in aquatic system: a review. IIOAB Journal, 2(1), 49–57.

Hopkin S.P., 1989. Metals in terrestrial invertebrates at the species, organism and organ levels. [in:] Mellanby K. (ed.), Ecophysiology of Metals in Terrestrial Invertebrates, Elsevier, Barking, 97–198.

Jordaens K., de Wolf H., Vandecasteele B., Blust R. & Backeljau T., 2006. Associations between strength, shell morphology and heavy metals in the land snail Cepaea nemoralis (Gastropoda: Helicidae). Science of the Total Environment, 363, 285–293.

Jordaens K., Vandecasteele B. & Backeljau T., 2007. Associations between shell strength, shell morphology and heavy metals in the land snail Cepaea nenoralis (Gastropoda, Helicidae). [in:] World Congress of Malacology: Antwerp, Belgium, 15–20 July 2007: Abstracts, Unitas Malacologica, 107.

Jurkiewicz-Karnkowska E., 2004. Malacocoenoses of large lowland dam reservoirs of the Vistula River basin and selected aspects of their function. Folia Malacologica, 12, 1–56.

Kabata-Pendias A. & Pendias H., 1993. Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa.

Kammenga J. E., Dallinger R., Donker M.H., Köhler H.-R., Simonsen V., Triebskorn R. & Weeks J.M., 2000. Biomarkers in terrestrial invertebrates for ecological soil risk assessment. Reviews of Environmental Contamina-tion and Toxicology, 164, 93–147.

Knutti R., Bucher P., Stengl M., Stolz M., Tremp J., Urlich M. & Schlatter C., 1988. Cadmium in the invertebrate fauna of an unpolluted forest in Switzerland. Environmental Toxin Series, 2, 171–191.

Krzak I., 2005. Zagospodarowanie terenów poprzemysłowych Krakowskich Zakładów Sodowych „Solvay”. [in:] Szponar A. & Horska-Schwarz S. (red.), Struktura przestrzenno-funkcjonalna krajobrazu, Problemy Ekologii Krajobrazu, 17, Instytut Geografii i Rozwoju Regionalnego, Uniwersytet Wrocławski, Wrocław, 283–287.

Lubell D., 2004. Prehistoric edible land snails in the circumMediterranean: the archaeological evidence. [in:] Petits animaux et sociétés humaines; du complément alimentaire aux ressources utilitaires. XXIV Rencontres internationales d’Archéologie et d’Histoire d’Antibes, APDCA, 77–88.

McGeer J.C., Henningsen G., Lanno R., Fisher N., Sappington K. & Drexler J., 2004. Issue Paper on the Bioavailability and Bioaccumulation of Metals. US Environmental Protection Agency.

Mierzwa D., 2008. Chemical composition and structure of the shell of Cepaea vindobonensis (Férussac, 1821) (Gastropoda: Pulmonata: Helicidae). Folia Malacologica, 16(1), 17–20.

Mierzwa D., 2011. Chemical composition of shells of Cepaea vindobonensis (Férussac, 1821) (Gastropoda: Pulmonata: Helicidae) from localities with different substrata. Folia Malacologica, 19(2), 97–101.

Murray Y.Ge.P. & Hendershot W.H., 2000. Trace metal speciation and bioavailability in urban soils. Environmental Pollution, 107, 137–144.

Oliver J., Hammerstrom K., McPhee-Shaw E., Slattery P., Oakden J., Kim S. & Hartwell S.I., 2011. High species density patterns in macrofaunal invertebrate communities in the marine benthos. Marine Ecology, 32(3), 278–288.

Pauget B., Gimbert F., Scheifler R., Coeurdassier M. & de Vaufleury A., 2012. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data. The Science of the Total Environment, 431, 413–425.

PN-EN ISO 17294-1:2007 Jakość wody – Zastosowanie spektrometrii mas z plazmą wzbudzoną indukcyjnie (ICP-MS) – Część 1: Wytyczne ogólne. Polski Komitet Normalizacyjny, Warszawa.

Rainbow P.S., 2002. Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 120, 497–507.

Regoli F., Gorbi S., Fattorini D., Tedesco S., Notti A., Machella N., Bocchetti R., Benedetti M. & Piva F., 2006. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environmental Health Perspectives, 114(1), 63–69.

Riedel A., 1988. Katalog fauny Polski. Cz. 36, t. 1: Ślimaki lądowe (Gastropoda terrestria). PWN, Warszawa.

Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleby oraz standardów jakości ziemi. Dz.U. 2002, nr 165, poz. 1359 [Regulation of the Minister of the Environment of 9 September 2002 on standards for soil quality and ground quality standards. Journal of Laws from 2002, No. 165, item 1359].

Rozporządzenie Ministra Środowiska z dnia 12 października 2011 r. w sprawie ochrony gatunkowej zwierząt. Dz.U. 2011, nr 237, poz. 1419 [Regulation of the Minister of the Environment of 12 October 2011 on animal species conservation. Journal of Laws from 2011, No. 237, item 1419].

Sardar K., Ali S., Hameed S., Afzal S., Fatima S., Shakoor M.B., Bharwana S.A. & Tauqeer H.M., 2013. Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety, 2(4), 172–179.

Scott-Fordsmand J.J. & Weeks J.M., 2000. Biomarkers in Earthworms. Reviews of Environmental Contamination and Toxicology, 165, 117–159.

Smith S.L., MacDonald D.D., Keenleyside K.A., Ingersoll C.G. & Field J., 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystem. Journal of Great Lakes Research, 22, 624–638.

Sohal R.S. & Lamb R.E., 1979. Storage-excretion of metallic kations in the adult housefly, Musca domestica. Journal of Insect Physiology, 25(2), 119–121, 123–124.

Stępczak K., 2011. Przyczynek do znajomości biologii i eksploatacji gospodarczej ślimaka winniczka (Helix pomatia L.). [in:] Kałuski T. (red.), Problemy współczesnej malakologii 2011: XXVII Krajowe Seminarium Malakologiczne, Toruń-Tleń 6–8 kwietnia 2011, Bogucki Wydawnictwo Naukowe, Poznań, 71–72.

Stępczak K. & Bogucki Z. (red.), 1983. Ślimak winniczek (H. pomatia L.): biologia, morfologia muszli, problemy przechowalnictwa i transportu w punktach skupu i bazach eksportowych. Prace Komisji Biologicznej – Poznańskie Towarzystwo Przyjaciół Nauk, 66, Państwowe Wydawnictwo Naukowe, Warszawa.

van Straalen N.M. & van Wensem J., 1986. Heavy metal content of forest litter arthropods as related to body size and trophic level. Environmental Pollution, 42, 209–221.

Šuteková E. & Hofman J., 2011. Biomarkers in ecotoxicology of soil invertebrates – suitable tool in environmental protection? Acta Environmentalica Universitatis Comenianae (Bratislava), 19, 358–360.

System monitoringu jakości powietrza. Małopolskie. [on-line:] http://monitoring.krakow.pios.gov.pl/dane-pomiarowe/ [access: January 2015].

Wardas M., Aleksander-Kwaterczak U., Jusik Sz., Hryc B., Zgoła T., Sztuka M., Kaczmarska M. & Mazurek M., 2010. An attempt to assess the impact of anthropopressure on the ecological state of urbanized watercourses of the Krakow conurbation and the difficulties encountere. Journal of Elementology, 15(4), 725–743.

Wiktor A., 2004. Ślimaki lądowe Polski. Mantis, Olsztyn.

Wilk-Woźniak E., Pociecha A., Ciszewski D., Aleksander-Kwaterczak U. & Walusiak E., 2011. Phyto- and zooplankton in fishponds contaminated with heavy metal runoff from a lead-zinc mine. Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology, 4(4), 77–85.

Williamson P., 1979. Opposite effects of age and weight on cadmium concentrations of a gastropod mollusc. Ambio, 8, 30–31.

Zöodl B. & Wittmann K.J., 2003. Effects of sampling, preparation and defecation on metal concentrations in selected invertebrates at urban sites. Chemosphere, 52, 1095–1103.