The forms of occurrence and geochemistry of sulfides in hard coal deposits of the Libiąż Beds in the Upper Silesian Coal Basin, Southern Poland

##plugins.themes.bootstrap3.article.main##

Barbara Bielowicz
Jacek Misiak

Keywords

Abstrakt

Samples of coal from the eastern part of the Upper Silesian Coal Basin, between Jaworzno and Libiąż, were collected from test boreholes and underground excavations in the Janina Coal Mine, southwest Poland. The No. 111-119 hard coal seams are in the upper part of the Cracow Sandstone Series (the Libiąż Beds, Westphalian D). Macroscopically, iron sulfides (pyrite and marcasite) found in hard coal seams are usually in vein and impregnation forms. On the basis of microscopic observations, the following forms of iron sulfides occurrence in the studied coal were observed: framboidal pyrite, euhedral crystals, skeletal and massive vein forms, or pocket-like (impregnation) forms. On the basis of SEM-EDS analysis and X-ray diffraction it can be stated that the iron sulfides observed in coal are a mixture of pyrite and marcasite. WDS analysis in the micro area revealed the chemical composition of sulfides. The iron sulfides contain admixtures of Pb, Hg, Zn, Cu, Au, Ag, Sb, Co, and Ni. There was no As and Cd found in the examined minerals. It has been shown that the tested iron sulfides do not include significant admixtures. There is only a slight enrichment in lead in the vein forms of sulfides. In addition to the iron sulfides, individual inclusions of galena and sphalerite within the pyrite and marcasite have been observed.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##
Abstract 398 | PDF (English) Downloads 256

Bibliografia

Adamczyk Z., Białecka B., Moszko J.C., Komorek J. & Lewandowska M., 2015. Rare Earth Elements of Orzeskie Beds of South-West Part Upper Silesian Coal Basin (Poland). Archives of Mining Sciences, 60, 1, 157-172.
Balme B.E., 1956. Inorganic sulfur in some Australian coals. Fuel, 29, 21-22.
Baruah M.K., 1995. The theory of genesis of secondary sulfur. Fuel Processing Technology, 45, 155-160.
Belkin H.E. & Luo K., 2008. Late-stage sulfides and sulfarsenides in Lower Cambrian black shale (stone coal) from the Huangjiawan mine, Guizhou Province. People’s Republic of China Mineralogy and Petrology, 92, 321-340.
Bielowicz B., 2013. Selected harmful elements in Polish lignite. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 29, 3, 47-59.
Casagrande D.J., Siefert L., Berschinski C. & Sutton N., 1977. Sulfur in peat forming systems of Okefenokee swamp and Florida Everglades, origin of sulfur in coal. Geochimica et Cosmochimica Acta, 41, 161-167.
Chou C.L., 2012. Sulfur in coals, a review of geochemistry and origins. International Journal of Coal Geology, 100, 1-13.
Dai S., Hou X., Ren D. & Tang Y., 2003. Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. International Journal of Coal Geology, 55, 139-150.
Dai S., Wang X., Chen W., Li D., Chou C.L., Zhou Y., Zhu C., Li H., Zhu X., Xing Y., Zhang W. & Zou J., 2010. A high- pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China, mineralogical and geochemical relations with underlying mafic tuffs. International Journal of Coal Geology, 83, 430-445.
Dai S., Zeng R. & Sun Y., 2006. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. International Journal of Coal Geology, 66, 217-226.
Dai S., Zhou P., Ren D., Wang X., Li D. & Zhao L., 2007. Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongging, southwestern China. Science. China Series D-Earth Sciences, 50, 678-688.
Dembowski Z., 1972. Krakowska seria piaskowcowa Górnośląskiego Zagłębia Węglowego. Prace Państwowego Instytutu Geologicznego, 61, PIG, Warszawa.
Demchuk T.D., 1992. Epigenetic pyrite in a low-sulfur, subbituminous coal from the central Alberta Plains. International Journal of Coal Geology, 21, 187-196.
Diehl S.F., Goldhaber M.B. & Hatch J.R., 2004. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama. International Journal of Coal Geology, 59, 193- 208.
Diehl S.F., Goldhaber M.B., Koenig A.E., Lowers H.A. & Ruppert L.F., 2012. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals, Evidence for multiple episodes of pyrite formation. International Journal of Coal Geology, 94, 238-249.
Elswick E.R., Hower J.C., Carmo A.M., Sun T. & Mardon S.M., 2007. Sulfur and carbon isotope geochemistry of coal and derived coal-combustion by-products, an example from an Eastern Kentucky mine and power plant. Applied Geochemistry, 22, 2065-2077.
Environment, 2015. [on-line:] http//www.stat.gov.pl [access: 31.08.2016].
Fleet M.E. & Mumin A.H., 1997. Gold-bearing arsenian pyrite and marcasite from Carlin Trend deposits and laboratory synthesis. The American Mineralogist, 82, 182-193.
Frankie K.A. & Hower J.C., 1987. Variation in pyrite size, form and microlithotype association in the Springfield (No. 9). and Herrin (No. 11). coals, western Kentucky. International Journal of Coal Geology, 7, 349- 364.
Górecki J., 1985. Siarka w polskich złożach węgla kamiennego. Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 1, 1, 111-120.
Harvey R.D. & DeMaris P.J., 1987. Size and maceral association of pyrite in Illinois coals and their float-sink fractions. Organic Geochemistry, 2, 343-349.
Harvey R.D. & Ruch R.R., 1986. Mineral matter in Illinois and other US coals. [in:] Vorres K.S. (ed.), Mineral Matter in Coal Ash and Coal, American Chemical Society Symposium Series, 301, American Chemical Society, 10-40.
Hower J.C., Campbell J.L., Teesdale W.J., Nejedly Z. & Robertson D., 2008. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. International Journal of Coal Geology, 75, 88-92.
ICCP, 1998. The new vitrinite classification (ICCP System 1994). Fuel, 77, 349-358.
ICCP, 2001. The new inertinite classification (ICCP System 1994). Fuel, 80, 459-471.
ICDD, 2017. International Centre for Diffraction Data Powder Diffraction File PDF-2. [on-line:] http://www.icdd. com/products/pdf2.htm [access: 21.02.2017].
Jureczka J., Aust J., Buła Z., Dopita M. & Zdanowski A., 1995. Mapa geologiczna GZW (odkryta po karbon). Wydawnictwo Kartograficzne, Warszawa.
Kabata-Pendias A. & Mukherjee A.B., 2007. Trace Elements from Soil to Human. Springer-Verlag, Berlin.
Ketris M.P. & Yudovich Ya.E., 2009. Estimations of Clarkes for Carbonaceous biolithes, World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135-148.
Kokowska-Pawłowska M., 2014. Relationship Between the Content of Hazardous Trace Elements in Coal Lithotypes and their Ashes (405 Coal Seam, USCB). Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 30, 2, 51-66.
Kolker A., 2012. Minor element distribution in iron disulfides in coal, A geochemical review. International Journal of Coal Geology, 94, 32-43.
Kortenski J. & Kostova I., 1996. Occurrence and morphology of pyrite in Bulgarian coals. International Journal of Coal Geology, 29, 273-292.
Kucha H. & Lipiarski I., 1998. Mineralogy and geochemistry of sulfides from coal seams, Upper Silesian Coal Basin, Poland. Mineralogica Polonica, 29, 2, 23-40.
Kwiecińska B.K., Hamburg G. & Vleeskens J.M., 1992. Formation temperatures of natural coke in the Lower Silesian coal basin, Poland, evidence from pyrite and clays by SEM-EDX. International Journal of Coal Geology, 21, 217-235.
Mastalerz M. & Drobniak A., 2007. Arsenic, cadmium, lead, and zinc in the Danville and Springfield coal members (Pennsylvanian) from Indiana. International Journal of Coal Geology, 71, 37-53.
Mastalerz M., Hower J.C., Drobniak A., Mardon S.M. & Lis G., 2004. From in-situ coal to fly ash, a study of coal mines and power plants from Indiana. International Journal of Coal Geology, 59, 171-192.
Misiak J., 2011. Microlithotype profile of the coal seam no. 116/2 (Libiąż beds). with facial interpretation - ZG “Janina” (USCB). Gospodarka Surowcami Mineralnymi - Mineral Resources Management, 27, 2, 5-15.
Querol X., Chinchon S. & Soler A.L., 1989. Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, northeastern Spain. International Journal of Coal Geology, 11, 171-189.
Renton J.J. & Bird D. S., 1991. Association of coal macerals, sulfur, sulfur species and the iron disulfide minerals in three columns of the Pittsburgh coal. International Journal of Coal Geology, 17, 21-50.
Renton J.J. & Cecil C.B., 1979. The origin of mineral matter in coal. [in:] Donalson A.C., Presley M.W.& Renton J.J. (red.), Carboniferous Coal Guidebook,1, Bulletin, 37, West Virginia Geological & Economic Survey, 206-223.
Ruppert L.F., Hower J.C. & Eble C.F., 2005. Arsenic-bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt formation, eastern Kentucky. International Journal of Coal Geology, 63, 27-35.
Sawłowicz Z., 2000. Framboids - from their origin to application. Prace Mineralogiczne, 9288, Wyd. Oddziału Polskiej Akademii Nauk, Kraków.
Spears D.A., Manzanares-Papayanopoulos L.I. & Booth C.A., 1999. The distribution and origin of trace elements in a UK coal, the importance of pyrite. Fuel, 78, 16711677.
Stach E., Mackowsky M.Th., Teichmuller M., Taylor G.H., Chandra D. & Teichmuller R., 1982. Stach‘s Textbook of Coal Petrology. Gebruder Borntraeger, Stuttgart.
Taylor G.H., Teichmuller M., Davis A., Diessel C.F.K., Littke R. & Robert P., 1998. Organic Petrology, Gebruder Borntraeger, Berlin.
Turner B.R. & Richardson D., 2004. Geological controls on the sulfur content of coal seams in the Northumberland Coalfield, Northeast England. International Journal of Coal Geology, 60, 169-196.
UNECE, 1998. International Classification of In-Seam Coals.Symbol Number: ENERGY/1998/19. [on-line:] http://www.unece.org/energy/se/coal/code.html [access: 24.06.2016].
United Nations, 2015. Adoption of the Paris agreement. FCCC/CP/2015/L.9/Rev.1, Conference of the Parties Twenty-first session, Paris, 30 November to 11 December 2015.
Uytenbogaardt W. & Burke E.A.J., 1985. Tables for microscopic identification of ore minerals. Dover Publications.
Ward C.R., 2002. Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology, 50, 135-168.
Weise R.G., Muir I.J. & Fyfe W.S., 1990. Trace-element siting in iron sulfides in Ohio coals determined by secondary ion mass spectrometry (SIMS). International Journal of Coal Geology, 14, 155-174.
Widodo S., Oschmann W., Bechtel A., Sachsenhofer R.F., Anggayana K. & Puettmann W., 2010. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia), Implications for paleoenvironmental conditions. International Journal of Coal Geology, 81, 151-162.
Wiese R.G. & Fyfe W.S., 1986. Occurrences of iron sulfides in Ohio coals. International Journal of Coal Geology, 6, 251-276.
Wilkin R.T. & Barnes H.L., 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61, 323-339.
Yudovich Y.E. & Ketris M.P., 2005. Arsenic in coal, a review. International Journal of Coal Geology, 61, 141-196.
Zdanowski A. & Żakowa H., 1995. The Carboniferous system in Poland. Prace Państwowego Instytutu Geologicznego, 148, PIG, Warszawa.