Changes in the methane emissions and hard coal output in the Brzeszcze mine (the Upper Silesian Coal Basin, Poland)

Main Article Content

Marcin Dreger https://orcid.org/0000-0002-7250-2523

Keywords

methane emission, the Upper Silesia Coal Basin, hard coal production, ventilation air methane, the Brzeszcze mine

Abstract

The paper presents the variability of methane emissions in mining excavations in the Brzeszcze mine (Poland) against the background of hard coal output, geological and mining factors. The geological structure of the Upper Silesian Coal Basin (USCB) is very diverse. The Brzeszcze coal deposit is located close to the large and permeable Jawiszowice fault which increases the methane hazard during mining activities performed close to this fault. The overall decrease in hard coal output (1988–2018) has coincided with a rapid increase in methane emissions (1997–2018). Throughout the study period, hard coal output decreased threefold from 3.9 to 1.2 million Mg annually. Coal extraction in high methane content beds (e.g. 510, 405/1, 364, 352) increases the total methane (CH4) emission into mining excavations, aggravating the methane hazard due to the high explosiveness of the gas. To protect miners, coal workings need to be continuously ventilated, taking the harmful gas out of the mine (ventilation air methane emission) or methane needs to be captured by underground methane systems (degassing). Every year, over 34 million m3 of CH4 is captured by the drainage systems and over 70 million m3 CH4 (average) is discharged through ventilation shafts into the atmosphere. The presence of the large, permeable regional dislocation, the Jawiszowice fault zone, shaped the methane concentration in the fault vicinity, when the highest methane emissions during coal mining was studied.

Downloads

Download data is not yet available.
Abstract 205 | PDF Downloads 138

References

Bałuk W. & Wyrwicki R., 1972. Geologia. Wydawnictwa Geologiczne, Warszawa.
Borowski J., 1969. Zależność gazowości ścian od wielkości wydobycia. Prace GIG, Komunikat nr 472, GIG, Katowice.
Chunshan Z., Bingyou J., Sheng X., Zhongwei C. & He L., 2019. Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review. Process Safety and Environmental Protection, 127, 103–124.
Coal Mine Methane Sources. Coalbed Methane Outreach Program, Coal Mine Methane Sources. https://www.epa.gov/cmop/coal-mine-methane-sourcesavailable [access: 2.02.2020].
Cybulski K. & Myszor H., 1974. Próba określenia ogólnej zależności wydzielania metanu od wielkości wydobycia. Archiwum Górnictwa, 27, 2.
Doktorowicz-Hrebicki S. & Bocheński T., 1952. Podstawy i niektóre wyniki pararelizacji pokładów węgla w Zagłębiu Górnośląskim. Geologiczny Biuletyn Informacyjny, 1, 13 –14.
Duda A. & Krzemień A., 2018. Forecast of methane emission from closed undergroundcoal mines exploited by long-wall mining – a case study of Anna coal mine. Journal of Sustainable Mining, 17, 184–194.
Dreger M., 2019. Methane emission in selected hard-coal mines of the Upper Silesian Coal Basin in 1997-2016. Geology, Geophysics & Environment, 45, 2, 121–132.
Dreger M. & Kędzior S., 2019. Methane emissions and demethanation of coal mines in the Upper Silesian Coal Basin between 1997 and 2016. Environmental & Socio-Economic Studies, 7, 1, 12–23
Euracoal, 2019. EURACOAL STATISTICS Coal and lignite production and imports in Europe. https://euracoal.eu/info/euracoal-eu-statistics/ [access: 1.04.2020].
Frączek R., 2005. Zwalczanie zagrożenia metanowego w kopalniach węgla kamiennego. Katedra Elektryfikacji i Automatyzacji Górnictwa Politechniki Śląskiej, Gliwice.
Frączek R. & Frączek J., 2004. Obliczenie wydajności emisji metanu z otworów odmetanowania górotworu w ścianach kopalń węgla kamiennego. Przegląd Górniczy, 60, 11, 54 – 62 .
Geological and Mining Law, 2011. Ustawa z dnia 9 czerwca 2011 r. – Prawo geologiczne i górnicze. Dz.U. 2011 nr 163, poz. 981with amendments.
Ghosh A., Patra P.K., Ishijima K., Umezawa T., Ito A. et al., 2015. Variations in global methane sources and sinks during 1910 –2010. Atmospheric Chemistry and Physics, 15, 5, 2595–2612.
Hunt J.M., 1979. Petroleum Geochemistry and Geology. W.H. Freeman, San Francisco.
Honysz J., 2015. Górnictwo 2. Wydawnictwo Naukowe “Śląsk”, Katowice.
Ju Y., Sun Y., Sa Z., Pan J., Wang J., Hou Q., Li Q., Yan Z. & Liu J., 2016. A new approach to estimate fugitive methane from coal mining in China. Science of the Total Environment, 543(Pt A), 514 –523.
Jureczka J. & Kotas A., 1995. Upper Silesian Coal Basin. [i n:] Zdanowski A. & Żakowa H. (eds.), The Carboniferous System in Poland, PIG, Warszawa, 164–172.
Jureczka J., Kasza P. & Kroplewski Ł., 2018. Pre-mine drain-age of methane from coal seams in the USCB–Geo-Methane Program. XXVII School of Underground Mining Session – Coal Mine Methane as a Valuable Energy Source Krakow, February 28th 2018. https://www.unece.org/fileadmin/DAM/energy/images/CMM/CMM_CE/SEP_-_11._Premine_Drainage_of_Methane_from_Coal_Seams_in_the_USCB_%E2%80%93_Geo-Methane_Program.pdf [access: 2.07.2020].
Karacan C.Ö. & Olea R.A., 2014. Inference of strata separation and gas emission paths in longwalloverburden using continuous wavelet transform of well logs and geo-statistical simulation. Journal of Applied Geophysics, 105, 147–158.
Karacan C.Ö., Ulery J.P. & Goodman G.V.R., 2008. A numerical evaluation on the effects of impermeable faults on degasification efficiency and methane emissions during underground coal mining. International Journal of Coal Geology,75, 195–203.K
Karacan C.Ö., Ruiz F.A., Cotè M. & Phipps S., 2011. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. International Journal of Coal Geology, 86, 121–156.
Kędzior S., 2009. Accumulation of coal-bed methane in the south-west part of the Upper Silesian Coal Basin (southern Poland). International Journal of Coal Geology, 80, 20–34.
Kędzior S., 2015. Emission and commercial utilization of coal mine methane in the Upper Silesian Coal Basin illustrated by the example of Katowice Coal Holding Company. Environmental & Socio-Economic Studies, 3, 1–10.
Kędzior S. & Dreger M., 2019. Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology, 211, 103226.
Kędzior S., Kotarba M.J. & Pękała Z., 2013. Geology, spatial distribution of methane content and origin of coalbed gases in Upper Carboniferous (Upper Mississippian and Pennsylvanian) strata in the south-eastern part of the Upper Silesia Coal Basin, Poland. International Journal of Coal Geology, 105, 24–35.
Kholod N., Evans M., Pilcher R.C., Roschanka V., Ruiz F., Cote M. & Collings R., 2020. Global methane emissions from coal mining to continue growing even with declining coal production. Journal of Cleaner Production, 256, 120489.
Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J.G. et al., 2013. Three decades of global methane sources and sinks. Nature Geoscience, 6, 813–823.
Konopko W. (red.), 2010. Warunki bezpiecznej eksploatacji pokładów węgla zagrożonych metanem, tąpaniami i pożarami endogenicznymi. Główny Instytut Górnictwa, Katowice.
Koptoń H. & Wierzbiński K., 2014. The balance of methane and ventilation as a tool for methane hazard assessment in the areas of longwalls exploited in hard coal mines. Journal of Sustainable Mining, 13, 4, 40–46.
Kotas A., 1990. Upper Silesian Coal Basin. [in:] Osika R. (ed .), Geology of Poland. Vol. 6: Mineral Deposits, Wydawnictwa Geologiczne, Warszawa, 77–92.
Kotas A. (ed.), 1994. Coal-bed Methane Potential of the Upper Silesian Coal Basin, Poland. Prace Państwowego Instytutu Geologicznego, 142, PIG, Warszawa.
Kotarba M.J., 2001. Composition and origin of gases in the Upper Silesian and Lublin coal basins, Poland. Organic Geochemistry, 32, 1, 163–180.
Kotarba M.J. & Pluta I., 2009. Origin of natural waters and gases within the Upper Carboniferous coal-bearing and autochthonous Miocene strata in south-western part of the Upper Silesian Coal Basin, Poland. Applied Geochemistry, 24, 5, 876–889.
Kozłowski B. & Grębski Z., 1982. Odmetanowanie górotworu w kopalniach. Wydawnictwo “Śląsk”, Katowice.
Krause E., 2005. Czynniki kształtujące wzrost zagrożenia metanowego w ścianach o wysokiej koncentracji wydobycia. Przegląd Górniczy, 61, 9, 19–26.
Krause E., 2019. Zagrożenie metanowe w kopalniach węgla kamiennego. Główny Instytut Górnictwa, Katowice.
Krause E. & Karbownik M., 2019. Tests of methane desorption and emission from samples of hard coal in the context of mine closures through flooding. Journal of Sustainable Mining, 18, 127–133.
Krause E. & Łukowicz K., 1999. Zagrożenia metanowe. [in]: Dubiński J. (red.), Koncentracja wydobycia a zagrożenia górnicze, Główny Instytut Górnictwa, Katowice.
Krause E. & Pokryszka Z., 2013. Investigations on methane emission from flooded workings of closed coal mines. Journal of Sustainable Mining, 12, 2, 40–45.
Krause E. & Smoliński A., 2013 Analysis and assessment of parameters shaping methane hazard in longwall areas. Journal of Sustainable Mining, 12, 13–19.
Lamberson M.N. & Bustin R.M., 1993. Coalbed methane characteristics of Gates Formation coals, northeastern British Columbia: effect of maceral composition. AAPG Bulletin, 77, 2062–2076.
Lu Y., Akhtar S., Sasmito A.P. & Kurnika J.C., 2017. Prediction of air f low, methane, and coal dust dispersion in a room and pillar mining face. International Journal of Mining Science and Technology, 27, 657–662.
Mohtasham Seyfi M., Khademi Hamidi J., Monjezi M. & Hosseini A., 2018. Estimation of coal seams gas content for evaluating potential use of methane drainage system in Tabas coal mine. Journal of Mining & Environment, 9, 3, 667–677. https://doi.org/10.22044/jme.2018.6783.1501.
Molayemat H. & Mohammad Torab F., 2017. Evaluation of coalbed methane potential in Parvadeh IV coal deposit in central Iran using a combination of MARS modeling and Kriging. Journal of Mining & Environment, 8, 2, 305–319. https://doi.org/10.22044/jme.2017.874.
Nawrat S., Kuczera Z., Łuczak R., Napieraj S. & Życzkowski P., 2006. Gospodarcze wykorzystanie metanu z odmetanowania pokładów węgla polskich kopalń węgla kamiennego. Górnictwo i Geoinżynieria, 30, 2, 35–51.
Noack K., 1998. Control of gas emissions in underground coal mines. International Journal of Coal Geology, 35, 57–82.
Obracaj D. & Swolkień J., 2016. Method of methane drain-age with using the cased long boreholes. Economic Commission for Europe Committee on Sustainable Energy Group of Experts on Coal mine Methane. Eleventh session, Geneva, 24–25 October 2016. https://www.unece.org/fileadmin/DAM/energy/se/pp/coal/cmm/11cmm_oct2016/a9_Methane.drainage_Poland_OBRACAJ_SWOLKIEN.pdf [access: 01.09.2020].
Patyńska R., 2013. Methane emissions from ventilation and degasification systems of hard coal mines in Poland in the years 2001–2010. Gospodarka Surowcami Mineralnymi, 29, 1, 17–33.
PGI, 2018. Nasze doświadczenia w zakresie pozyskiwania metanu z pokładów węgla prezentowane w Bogocie. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy. https://www.pgi.gov.pl/aktualnosci/display/10885-nasze-doswiadczenia-w-zakresie-pozyskiwania-metanu-z-pokladow-wegla-prezentowane-w-bogocie.html [access: 1.03.2020].
PGNiG News, 2019. Coal-bed methane-fueled power generation unit launched by PGNiG in Gilowice. http://en.pgnig.pl/news/-/news-list/id/coal-bed-methane-fueled-power-generation-unit-launched-by-pgnig-in-gilowice/news-GroupId/1910852 [access: 1.03.2020].
Regulation of the Ministry of the Environment, 2013. Rozporządzenie Ministra Środowiska z dnia 29 stycznia 2013 r. w sprawie zagrożeń naturalnych w zakładach górniczych. Dz.U. 2013 poz. 230.
Report, 1995–2018. Annual Report (for the years 1994–2018) on the state of basic natural and technical hazards in the hard coal mining industry. Gas hazard. Główny Instytut Górnictwa, Katowice.
State Mining Authority, 2019. Statystyki wypadków. Wyższy Urząd Górniczy, Katowice. http://www.wug.gov.pl/bhp/statystyki_wypadkow [access: 1.06.2020].
Su S., Beath A., Guo H. & Mallett C., 2005. An assessment of mine methane mitigation and utilisation technologies. Progress in Energy and Combustion Science, 31, 2, 123–170.
Swolkień J., 2020. Polish underground coal mines as point sources of methane emission to the atmosphere. International Journal of Greenhouse Gas Control, 94, 102921. https://doi.org/10.1016/j.ijggc.2019.102921.
Szlązak N. (red.), 2015. Odmetanowanie górotworu w kopalniach węgla kamiennego. Wydawnictwa AGH, Kraków.
Szlązak N., Obracaj D. & Głuch B., 2013. Estimation of microclimate condition in longwall excavations in hard coal mines. AGH Journal of Mining and Geoengineering, 37, 1, 117–128.
Szlązak N., Obracaj D. & Swolkień J., 2014. Methane drainage from roof strata using an overlying drainage gallery. International Journal of Coal Geology, 136, 99–115.
Szlązak N., Borowski M., Obracaj D., Swolkień J., Korzec M. & Piergies K., 2017. Current ventilation problems in hard coal mines. Wydawnictwa AGH, Kraków.
Szlązak N., Obracaj D. & Swolkień J., 2020. Enhancing Safety in the Polish High-Methane Coal mines: an Overview. Mining, Metallurgy & Exploration,37, 567–579.
Tauron – internal report [geological documentation, unpublished].
Tauron Brzeszcze mine website. https://www.tauron-wydobycie.pl/spolka/zg-brzeszcze/charakterystyka-zakladu [access: 1.02.2020].
Teper L. & Sagan G., 1995. Geological history and mining seismicity in Upper Silesia (Poland). [in:] Rossmanith H.P. (ed.), Mechanics of Jointed and Faulted Rock, Balkema, Rotterdam, 939–943.
Thielemann T., Kroos B.M., Littke R. & Welte D.H., 2001. Does coal mining induce methane emissions through the lithosphere/atmosphere boundary in the Ruhr Basin, Germany? Journal of Geochemical Exploration,74 , 219–231.
Trenczek S., 2016. Study of influence of tremors on combined hazards. Longwall mining operations in co-occurrence of natural hazards. A case study. Journal of Sustainable Mining, 15, 1, 36–47.
Turek M., 2007. Techniczna i organizacyjna restrukturyzacja kopalń węgla kamiennego. Główny Instytut Górnictwa, Katowice.
Warmuziński K., 2008. Harnessing methane emissions from coal mining. Process Safety and Environmental Protection ,86, 5, 315–320.
Wojsa B., 2019. Gilowice: metan z pokładów węgla trafi do sieci gazowej. https://dziennikzachodni.pl/gilowice-metan-z-pokladow-wegla-trafi-do-sieci-gazowej/ar/c1-14302541 [access: 1.03.2020].
Yusuf R.O., Noor Z.Z., Abba A.H., Hassan M.A.A. & Din M.F.M., 2012. Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renewable and Sustainable Energy Reviews,16, 7, 5059–5070.