The content and composition of organic matter in bottom sediments of the Rybnik reservoir - preliminary studies

Main Article Content

Agnieszka Baran
Monika Mierzwa-Hersztek
Krzysztof Gondek
Magdalena Szara
Marek Tarnawski

Keywords

bottom sediments, organic matter, buffer capacity, pollutions

Abstract

Organic matter has important influences on the fate of environmental pollution in water dam reservoirs. The aim of the studies was to assess content of organic matter fractions in Rybnik reservoir bottom sediments, and to determine their influence on the content of heavy metals and PAHs. In three sediment samples, the content of C organic (Corg), C extracted (Cex), C humic acid (Cha), C fulvic acid (Cfa) and C non-hydrolyzed (Cnh), buffer capacity, and content of heavy metals and PAHs was analyzed. We found the highest content of Corg, Cex, Cha, Cfa and Cnh in sample 3 (the outlet, near the dam), while the lowest content was found in sample 2 (middle). The fraction of Cnh was dominant in sediment sample 3 (outlet, near dam) and 1 (inlet), whereas the fraction of Cha dominated in sample 2 (middle). Rybnik bottom sediments are characterized by their high buffer capacities (samples 3, 1) shaped among others by the high content of organic matter. The high organic matter content in samples 3 (outlet) and 1 (inlet) and also high total contents of heavy metals and PAHS in these sediments demonstrate that these pollutants have a strong affinity for organic matter in the sediments. Moreover, the highest mobility of metals, from sample 2 (middle), is connected with the low content of organic matter substances and the low buffer capacities of sediments.

Downloads

Download data is not yet available.
Abstract 430 | PDF Downloads 297

References

Aleksander-Kwaterczak U., 2007. Rozmieszczenie metali śladowych w rdzeniach osadów wybranych rzek Polski. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
Baran A., Tarnawski M. & Kaczmarski M., 2011a. Assessment of agricultural utilization of bottom sediment from the Besko Reservoir. Czasopismo Techniczne, 1-Ch, 8, 108, 23-11.
Baran A., Tarnawski M. & Jasiewicz C., 2011b. Assessment of the content and solubility of heavy metals in bottom sediments of Chancza reservoir. Ecological Chemistry and Engineering A, 18, 7, 941-950.
Baran A., Tarnawski M. & Koniarz T., 2016. Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland. Environmental Science and Pollution Research, 23, 17, 17255-17268.
Baran A., Tarnawski M., Urbański K., Klimkowicz-Pawlas A. & Spałek I., 2017. Concentration, sources and risk assessment of PAHs in bottom sediments. Environmental Science and Pollution Research, 24, 29, 23180-23195.
Bohacek Z., Bezdek J., Kovarova M., Hanak J., Toul J. & Muller., 2003. Characteristics of organic matter and contents of some ubiquitous hydrophobic organic Pollutants in selected soils and sediments. Bulletin of Geosciences, 78, 3, 179-204.
Bojakowska I. & Krasuska J., 2014. Copper and other trace elements in sediments of lake near Konin (Poland). Journal of Elementology, 19(1), 31-40.
Cornelissen G., Gustafsson O., Bucheli T., Jonker M., Koelmans A. & van Noort P., 2005. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science and Technology, 39, 6881-6895.
Dahle S., Savinov V., Matishov G., Evenset A. & Neas K., 2003. Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf, Gulf of Ob and Yenisei Bay. The Science of The Total Environment, 306, 57-71.
Du Laing G., Rinklebe J., Vandecasteele B., Meers E. & Tack F.M.G., 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of Total Environment, 407, 3972-3985.
Farkas A., Erratico C. & Vigano L., 2007. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68, 761-768.
Giovanela M. et al., 2010. Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin. Journal of Molecular Structure, 981, 1-3, 111-119.
Gondek K. & Kopeć M., 2006. Heavy metal binding by organic substance in sewage sludge of various origins. Electronic Journal of Polish Agricultural Universities, 9(3), [on-line:] http/ejpau.media.pl/volume9/issue3/art-01.html [access: 22.11.2017].
Gondek K. & Mierzwa M., 2014. Quantity and quality of organic matter in soil after application of various organic materials. Ecological, Chemistry and Engineering S, 21, 3, 477-485.
Hou D., He J., Lu Ch., Wang W. & Zhang F., 2014. Spatial distributions of humic substances and evaluation of sediment organic index on lake Dalinouer, China. Journal of Geochemistry, [on-line:] http://dx.doi.org/ 10.1155/2014/502597 [access: 26.11.2017].
Kononowa M., 1968. Substancje organiczne gleby, ich budowa, właściwości i metody badań. PWRiL, Warszawa.
Klimkowicz-Pawlas A., 2009. Oddziaływanie wielopierścieniowych węglowodorów aromatycznych na siedliskową funkcję gleby. Monografie i Rozprawy Naukowe - Instytut Uprawy, Nawożenia i Gleboznawstwa, 22, Instytut Uprawy Nawożenia i Gleboznawstwa - Państwowy Instytut Badawczy, Puławy.
López D.L., Gierlowski-Kordesch E. & Hollenkamp C., 2010. Eochemical mobility and bioavailability of heavy metals in a lake affected by acid mine drainage: Lake Hope, Vinton County, Ohio. Water, Air and Soil Pollution, 213, 27-45.
Maliszewska-Kordybach B., Klimkowicz-Pawlas A. & Smreczak B., 2010. Relationship between the properties of mineral soils and the level of accumulation of persistent organic contaminants; example of polycyclic aromatic hydrocarbons. [in:] Szajdak L.W. & Karabanov A.K. (eds.), Physical, Chemical and Biological Process in Soils, The Committee on Land Reclamation and Agricultural Environment Engineering, Polish Academy of Science, Poznań, 345-358.
Mamontova E.A, Mamontov A.A. & Tarasova E.N., 2016. Polychlorinated biphenyls and organochlorine pesticides in bottom sediments of the Irkutsk Reservoir. Water Quality and Protection, 43, 2, 335-340.
Mengchang H.E., Yehong S.H.I. & Chunye L.I.N., 2008. Characterization of humic acids extracted from the sediments of the various rivers and lakes in China. Journal of Environmental Sciences, 20, 1294-1299.
Morales J., Manso J., Cid A. & Mejuto J.C., 2012. Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions. Chemosphere, 89, 1267-1271.
Oleszczuk P., 2007a. Biodostępność i bioakumulacja hydrofobowych zanieczyszczeń organicznych. Cz. I. Informacje ogólne. Biotechnologia, 1(76), 9-25.
Oleszczuk P., 2007b. Biodostępność i bioakumulacja hydrofobowych zanieczyszczeń organicznych. Cz. II. Sorpcja zanieczyszczeń oraz czynniki wpływające na ten proces. Biotechnologia, 1(76), 26-39.
Raposo J., Villanueva U., Olivares M. & Madariaga M.J., 2016. Determination of humic substances in sediments by focused ultrasound extraction and ultraviolet visible spectroscopy. Microchemical Journal, 128, 26-33.
Shaheen, S.M. & Rinklebe J., 2014. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe. Geoderma, 228-229, 152-159.
Simpson M., Chefetz B., Deshmukh A. & Hatcher P., 2005. Comparison of polycyclic aromatic hydrocarbon distributions and sedimentary organic matter characteristics in contaminated, coastal sediments from Pensacola Bay, Florida. Marine Environmental Research, 59, 139-163.
Szarek-Gwiazda E., 2014, Potential effect of pH on the leaching of heavy metals from sediments of the Carpathian dam reservoirs. Geology, Geophysics &Environment, 40, 4, 349-358.
Tavakoly Sany S.B., Hashim R., Salleh A., Rezayi M., Mehdinia A. & Safari O., 2014. Polycyclic aromatic hydrocarbons in coastal sediment of Klang Strait, Malaysia: distribution pattern, risk assessment and sources. Plos One, 9, e94907.
Tuikka A.I., Schmitt C., Hoss S. et al., 2011. Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicology and Environmental Safety, 74, 123-131.
Ukalska-Jaruga A., Smreczak B., Klimkowicz-Pawlas A. & Maliszewska-Kordybach B., 2015. Rola materii organicznej w procesach akumulacji trwałych zanieczyszczeń organicznych (TZO) w glebach. Polish Journal of Agronomy, 20, 15-23.
Urbaniak M., Zieliński M. & Wagner I., 2015. Seasonal distribution of PCDDs/PCDFs in the small urban reservoirs. International Journal of Environmental Research, 9, 2, 745-752.
Wang Ch., Zou X., Zhao Y., Li B., Song Q., Li Y., & Yu W., 2016. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in the water and suspended sediments from the middle and lower reaches of the Yangtze River, China. Environmental Science and Pollution Research, 23, 17158-17170.
Wang X-T., Miao Y., Zhang Y., Li Y-Ch., Wu M-H. & Yu G., 2013. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80-89.
Wu Ch., Bao L-J, Tao S. & Zeng E., 2016. Mediated distribution pattern of organic compounds in estuarine sediment by anthropogenic debris. Science of the Total Environment, 565, 132-139.
Yang X., Liuqian Y., Zefang Ch. & Meiying Xu., 2016. Bioavailability of Polycyclic Aromatic Hydrocarbons and their Potential Application in Eco-risk Assessment and Source Apportionment in Urban River Sediment. Scientific Reports, 6, 23134.