Selected aspects of modern seismic imaging and near-surface velocity model building in the area of Carpathian fold and thrust belt

Main Article Content

Andrzej Michał Dalętka https://orcid.org/0000-0001-7009-9593

Keywords

seismic imaging, seismic refraction, seismic forward modelling, Carpathian fold and thrust belt, tomographic inversion, shallow velocity model

Abstract

Despite the increasing technological level of the reflection seismic method, the imaging of fold and thrust belts remains a demanding task, and usually leaves some questions regarding the dips, the shape of the subthrust structures or the most correct approach to velocity model building. There is no straightforward method that can provide structural representation of the near-surface geological boundaries and their velocities. The in-terpretation of refracted waves frequently remains the only available technique that may be used for this purpose, although one must be aware of its limitations which appear in the complex geological settings.


In the presented study, the analysis of velocity values obtained in the shallow part of Carpathian orogenic wedge by means of various geophysical methods was carried out. It revealed the lack of consistency between the results of 3D refraction tomography and both the sonic log and uphole velocities. For that reason, instead of the indus-try-standard utilization of tomography, a novel, geologically-consistent method of velocity model building is pro-posed. In the near-surface part, the uphole velocities are assigned to the formations, documented by the surface geologic map. Interpreted time-domain horizons, supplemented by main thrusts, are used to make the velocity field fully-compatible with the litho-stratigraphic units of the Carpathians.


The author demonstrates a retrospective overview of seismic data imaging in the area of the Polish Carpathian orogenic wedge and discusses the most recent global innovations in seismic methodology which are the key to successful hydrocarbon exploration in fold and thrust regions.

Downloads

Download data is not yet available.
Abstract 148 | Text. pdf Downloads 35

References

Berkovich A.,1999. Multifocusing in Practice. SEG Technical Program Expanded Abstracts, 17(1), 1748–1751. https://doi.org/10.1190/1.1820265.
Berkovitch A., Belfer I. & Landa E., 2008. Multifocusing as a method of improving subsurface imaging. The Leading Edge, 27(2), 250–256. https://doi.org/10.1190/1.2840374.
Colombo D., 1999. Feasibility study for long offset seismic acquisition in a thrust-belt. SEG Technical Program Expanded Abstracts, 22(1), 51–54. https://doi.org/10.1190/1.1817976.
Constable S.C., Parker R.L. & Constable C.G., 1987. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300. https://doi.org/10.1190/1.1442303.
Curia D., Borghi P., & Noble J., Berkovitch A., Justo D. & Alayón M., 2017. The impact of multifocusing in the processing of land 3D seismic data in a fold and thrust belt setting: Ranquil Norte Block, Neuquén Basin, Argentina. The Leading Edge, 36(9), 770–774. https://doi.org/10.1190/tle36090770.1.
Czapowski G., 1994. The Middle Badenian rock salts in the Carpathian Foredeep – characteristics, origin and economic value. Geological Quarterly, 38(3), 513– 526.
Garlicki A., 1979. Sedymentacja soli mioceńskich w Polsce. Prace Geologiczne – Polska Akademia Nauk. Oddział w Krakowie. Komisja Nauk Geologicznych, 119, Zakład Narodowy im. Ossolińskich, Wrocław – Kraków.
Gerea C., Mougenot J.-M. & Clement F., 2011. Seismic imaging in thrust‐belts with rugged topography – A 3D modeling approach. SEG Technical Program Expanded Abstracts, 2881–2885. https://doi.org/10.1190/1.3627793.
Gittins J., Vestrum R. & Gillcrist R., 2004. Overcoming thrust‐belt imaging problems in Magdalena Valley, Colombia. SEG Technical Program Expanded Abstracts, 2021–2023. https://doi.org/10.1190/1.1839685.
Habeebuddin M. & Pandey R.S., 2006. Advanced static solution for relating outcrop and subsurface geology: A key to exploration in the Himalayan thrust belt. The Leading Edge, 25(7), 860–866. https://doi.org/10.1190/1.2221364.
Ikelle L.T. & Amundsen L., 2018. Advanced Numerical Modeling. [in:] Introduction to Petroleum Seismology, 2nd ed., Society of Exploration Geophysicists, 813–884. https://doi.org/10.1190/1.9781560803447.ch17.
Issac H. & Lawton D., 2008. Seismic velocity model building in an area of complex geology, southern Alberta, Canada. Geophysics, 73(5), 255–260. https://doi.org/10.1190/1.2949254.
Jaiswal P., Zelt C., Bally A.W. & Dasgupta R., 2008. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India. Geophysical Journal International, 173, 642–658. https://doi.org/10.1111/j.1365-246X2007.03691.x.
Kaminsky A., 2020. Zondst2D software manual.
Koren Z. & Ravve I., 2011. Full-azimuth subsurface angle domain wavefield decomposition and imaging Part I: Directional and reflection image gathers. Geophysics, 76, S1–S13. https://doi.org/10.1190/1.3511352.
Kotlarczyk J., 1978. Stratygrafia formacji z Ropianki (fm), czyli warstw inoceramowych w jednostce skolskiej Karpat fliszowych. Prace Geologiczne – Polska Akademia Nauk. Oddział w Krakowie. Komisja Nauk Geologicznych, 108, Zakład Narodowy im. Ossolińskich, Wydawnictwo PAN, Wrocław – Warszawa.
Krobicki M. & Golonka J., 2008. Geological history of the Pieniny Klippen Belt and Middle Jurassic black shales as one of the oldest deposits of this region – stratigraphical position and palaeoenvironmental significance. Geotourism/Geoturystyka, 2(13), 3–18. https://doi.org/10.7494/geotour.2008.13.3.
Krzywiec P., 1999. Mioceńska ewolucja tektoniczna wschodniej części zapadliska przedkarpackiego (Przemyśl-Lubaczów) w świetle interpretacji danych sejsmicznych. Prace Państwowego Instytutu Geologicznego,168, 249–276.
Krzywiec P., Bukowski K., Oszczypko-Clowes M., Śmigielski M., Stuart F., Persano C. & Sinclair H., 2014. Structure and evolution of the Carpathian thrust front between Tarnów and Pilzno (Pogórska Wola area, Southern Poland) – results of integrated analysis of seismic and borehole data. Geological Quarterly, 58, 3, 409–426. https://doi.org/10.7306/gq.1189.
Lecomte I., Lubrano-Lavadera P., Anell I., Buckley S.J., Schmid D.W. & Heeremans M., 2015. Ray-based seismic modeling of geologic models: Understanding and analyzing seismic images efficiently. Interpretation, 3, SAC71–SAC89. https://doi.org/10.1190/INT-2015-0061.1.
Li J. & Mitra S., 2020. Seismic modeling and expression of common fold-thrust structures. Interpretation, 8, T55–T65. https://doi.org/10.1190/INT-2019-0035.1.
Li Q., 1996. Tomographic inversion of near-surface velocity structure and refraction statics. GLI3D Technical Documentation, Hampson-Russell Software Services Ltd.
Liu G., Meng X., Tan H. & Chen Z., 2018. Reflection seismic and CSAMT in thrust controlled mineral exploration, Fujian, China. SEG Technical Program Expanded Abstracts, 1913–1917. https://doi.org/10.1190/segam2018-2987762.1.
Liu Z., Sa L., Dong S. & Tang D., 2009. Practices and expectation of high-density seismic exploration technology in CNPC. Petroleum Exploration and Development, 36(2), 129–135. https://doi.org/10.1016/S1876-3804(09)60115-4.
Malata T., 1996. Analysis of standard lithostratigraphic nomenclature and proposal of division for Skole unit in the Polish Flysch Carpathians. Geological Quarterly, 40, 543–554.
Malz A., Madritsch H. & Kley J., 2015. Improving 2D seismic interpretation in challenging settings by integration of restoration techniques: A case study from the Jura fold-and-thrust belt (Switzerland). Interpretation, 3: SAA37–SAA58. https://doi.org/10.1190/INT-2015-0012.1.
Mann J., Schleicher J. & Hertweck T., 2007. CRS Stacking – A Simplified Explanation. [in:] London 2007: securing the future: 69th EAGE Conference & Exhibition incorporating SPE EUROPEC 2007, 11–14 June 2007, ExCeL, London, EAGE, Houten. https://doi.org/10.3997/2214-4 609.2014 01499.
Ney R., 1968. Rola rygla krakowskiego w geologii Zapadliska Przedkarpackiego i rozmieszczeniu złóż ropy i gazu. Prace Geologiczne – Polska Akademia Nauk. Oddział w Krakowie. Komisja Nauk Geologicznych, 45, Wydawnictwa Geologiczne, Warszawa.
Oszczypko N., 2006. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50(1), 169–194.
Oszczypko N., Krzywiec P., Popadyuk I. & Peryt T., 2006. Carpathian Foredeep Basin (Poland and Ukraine) – its sedimentary, structural and geodynamic evolution. [in:] Golonka J. & Picha F.J. (eds.), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, American Association of Petroleum Geologists Memoir, 84, AAPG, 293–350.
Oszczypko N., Ślączka A. & Żytko K., 2008. Regionalizacja tektoniczna Polski – Karpaty zewnętrzne i zapadlisko przedkarpackie. Przegląd Geologiczny, 56, 10, 927–935.
Rigatti V., Fox A., Roden R., Danahey L., Gajkowski W., Maili E. & Vigh D., 2001. 3-D PSDM case history in a thrust belt: Quiriquire Block, Easter. The Leading Edge, 20(5), 514–518. https://doi.org/10.1190/1.1438982.
Ristow D. & Ruhl T., 1994. Fourier finite-difference migration. Geophysics, 59(12), 1882–1893. https://doi.org/10.1190/1.1443575.
Schmelzbach C., 2007. Seismic-Reflection and Seismic-Refraction imaging of the South Portuguese Zone Thrust-and-Fold Belt. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of the Uppsala Dissertations from the Faculty of Science and Technology.
Schmelzbach C., Simancas J., Juhlin Ch. & Carbonell R., 2008. Seismic reflection imaging over the South Portuguese Zone fold-and-thrust belt, SW Iberia. Journal of Geophysical Research, 113. https://doi.org/10.1029/2007JB005341.
Schmid R., Link B. & Butler P., 1996. A comprehensive approach to depth imaging in thrust belt environments. SEG Technical Program Expanded Abstracts, 366–368. https://doi.org/10.1190/1.1826644.
Schuster G.T. & Quintus‐Bosz A., 1993. Wavepath eikonal traveltime inversion: Theory. Geophysics, 58, 1314–1323, https://doi.org/10.1190/1.1443514.
Serra S., 2018. Using outcrop data and analog models to aid seismic interpretation in fold and thrust belts. Interpretation, 6, SM51–SM61. https://doi.org/10.1190/INT-2018-0014.1.
SeyedAli S.M. & Zabihi S., 2012. Optimizing seismic data acquisition by forward modeling: A case study in Zagros thrust belt. SEG Global Meeting Abstracts, 1–4. https://doi.org/10.1190/IST092012-001.48.
Sheehan J.R., Doll W.E. & Mandell W.A., 2005. An Evaluation of Methods and Available Software for Seismic Refraction Tomography Analysis. Journal of Environmental & Engineering Geophysics, 10(1), 21–34. https://doi.org/10.2113/JEEG10.1.21.
Shiraishi K., Robb M., Hosgood K. & Yamada Y., 2019. Seismic imaging of complex crustal structure by common ref lection angle migration. SEG Global Meeting Abstracts, 54–57. https://doi.org/10.1190/SEGJ2018-015.1.
Singh P. & Pandey R.S., 2007. Relooking of gravity data in Himalayan fold‐thrust belt for generation of an integrated geological model – A model‐based case study. SEG Technical Program Expanded Abstracts, 826–830. https://doi.org/10.1190/1.2792537.
Soleimani M., Mann J., Khalilzadeh H.A. & Jamali J., 2012. Seismic imaging in complex region of Zagros thrust fault belt by CRS and CDS stack method. SEG Global Meeting Abstracts, 1–4. https://doi.org/10.1190/IST092012-001.49.
Szotek A., Schnabel W., Szeliga W., Hoffman A., Urbańczyk M. & Mika L., 2018. Aktualizacja powierzchniowej mapy geologicznej dla projektu polowe prace sejsmiczne 3D: Kramarzówka. Geokrak Sp. z. o.o., Kraków [unpublished report].
Ślączka A., Krugłov S., Golonka J., Oszczypko N. & Popadyuk I., 2006. Geology and Hydrocarbon Resources of the Outer Carpathians, Poland, Slovakia, and Ukraine: General Geology. [in:] Golonka J. & Picha F.J. (eds.), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, American Association of Petroleum Geologists Memoir, 84, AAPG, 221–258.
Vestrum R., 2007. Geoscience integration for seismic imaging in thrust‐belt environments. SEG Technical Program Expanded Abstracts, 2792–2796. https://doi.org/10.1190/1.2793047.
Vestrum R. & Lawton D., 1999. Anisotropic depth migration: Reducing lateral‐position uncertainty of subsurface structures in thrust‐belt environments. SEG Technical Program Expanded Abstracts, 1107–1109. https://doi.org/10.1190/1.1820694.
Vidale J.E., 1990. Finite Difference calculations in three dimensions. Geophysics, 55(5), 521–526. https://doi.org/10.1190/1.1889870.
Waśkowska A., Joniec A., Kotlarczyk J. & Siwek P., 2019. The Late Cretaceous Fucoid Marl of the Ropianka Formation in the Kąkolówka Structure (Skole Nappe, Outer Carpathians, Poland) – lithology and foraminiferal biostratigraphy. Annales Societatis Geologorum Poloniae, 89, 259–284. https://doi.org/10.14241/asgp.2019.04.
Yilmaz O., Uygun S., Ölmez A. & Emel C., 2010. Mapping Imbricate Structures in the Thrust Belt of Southeast Turkey by Large‐Offset Seismic Survey. SEG Technical Program Expanded Abstracts, 1337–1341. https://doi.org/10.1190/1.3513090.
Zhu T., 1999. First-arrival tomography: Method and application. SEG Technical Program Expanded Abstracts, 19. https://doi.org/10.1190/1.1815839.
Zhu T., Cheadle S., Li Q. & Hampson D., 1998. Near-surface refraction statics: a comparison [unpublished].
Żytko K., Zając R., Gucik S., Ryłko W., Oszczypko N., Galicka I., Nemčok J., Eliáš M., Menčik E. & Stránik Z., 1989. Map of Tectonic Elements of the Western Outer Carpathians and Their Foreland. [in:] Poprawa D. & Nemčok J. (red.), Geological Atlas of the Western Carpathians and their Foreland, Wydawnictwa Geologiczne, Warszawa.