What can be learned about the deposition and compaction of peat from the Miocene lignite seam exposed in the Chłapowo Cliff on the Polish coast of the Baltic Sea?

Main Article Content

Marek Widera

Keywords

Baltic Sea coast, lignite, peat, deposition, compaction, compaction ratio

Abstract

This study focuses on discussing the relationship between the accumulation of peat and its compaction in the overbank zone of the Miocene river system. The examined 2nd Lusatian lignite seam is characteristically interbedded with sandy deposits and these are less compressible than peat. Therefore, in favourable conditions such as those found at Chłapowo Cliff (on the Baltic Sea coast in northern Poland), it is possible to identify the effects of an even or uneven lowering of the mire surface, resulting from diversified compaction of the underlying phytogenic beds. The research problem was applied to two examples located close to each other within the lignite seam. The first case shows the accumulation of fresh peat layers of almost equal thickness, while the second one presents a reduction in the thickness of fresh peat beds over the fossilised channel-fill sandy body. Only the latter example allows us to calculate the peat-to-lignite compaction ratio.
The results of the compaction ratio obtained, Cr ≈ 7.37, mean that the youngest, fresh peat layers were compacted at least 7 times, transforming them into lignite beds. However, such a high compaction value, estimated for the top layers of the Miocene mire, cannot be directly taken into account when reconstructing the total thickness of the peat seam prior to covering it with mineral overburden. The published peat-to-lignite compaction ratios, determined using other research methods, for the 2nd Lusatian lignite seam or its stratigraphic equivalents range from 1.7 to 6.0 in most cases, with averages of 2.2 to 4.0. The differences between the data in the literature and the results given in this paper are due to the fact that the process of peat/lignite compaction is ongoing and cumulative.

Downloads

Download data is not yet available.
Abstract 296 | PDF Downloads 228

References

Diessel C., Boyd R., Wadsworth J., Leckie D. & Chalmers G., 2000. On balanced and unbalanced accommodation/peat accumulation ratios in the Cretaceous coals from Gates Formation, Western Canada, and their sequence-stratigraphic significance. International Journal of Coal Geology, 43, 143–186.

Hager H., 1993. Origin of the Tertiary lignite deposits in the lower Rhine region, Germany. International Journal of Coal Geology, 23, 251–262.

Hager H., Kothen H. & Spann R., 1981. Zur Setzung der Rheinischen Braunkohle und ihrer klastischen Begleitschichten. Fortschritte in der Geologie von Rheinland und Westfalen, 29, 319–352.

Hurník S., 1972. Koeficient sednutí některých sedimentů v Severočeské hnědouhelné pánvi. Časopis pro mineralogii a geologii, 17/4, 365–372.

Kasiński J.R., 1984a. Tektonika synsedymentacyjna jako czynnik warunkujący sedymentację formacji burowęglowej w zapadliskach tektonicznych na obszarze zachodniej Polski. Przegląd Geologiczny, 32, 260–268.

Kasiński J.R., 1984b. Synsedimentary tectonics as a factor controlling sedimentation of brown-coal formations in tectonic depressions in western Poland. [in:] Borisov V.S. (ed .), Solid fuel mineral deposits: proceedings of the 27th International Geological Congress, Moscow 4–14 August 1984: volume 14, VNU Science Press, Utrecht, 247–279.

Kasiński J.R. & Słodkowska B., 2016. Factors controlling Cenozoic anthracogenesis in the Polish Lowlands. Geological Quarterly, 60, 959–974.

Kramarska R., 2002. Trzeciorzęd w strefie brzegowej między Jastrzębią Górą a Władysławowem. [in:] Przewodnik LXXIII Zjazdu Polskiego Towarzystwa Geologicznego: Geologia regionu Gdańskiego, Wydawnictwo Państwowego Instytutu Geologicznego, Gdańsk, 69–74.

Kwiecińska B. & Wagner M., 1997. Typizacja cech jakościowych węgla brunatnego z krajowych złóż według kryteriów petrograficznych i chemiczno-technologicznych dla celów dokumentacji geologicznej złóż oraz obsługi kopalń. Wydawnictwo Centrum Podstawowych Problemów Gospodarki Surowcami Mineralnymi i Energii PAN , Kraków.

Michon L., van Balen R.T., Merle O. & Pagnier H., 2003. The Cenozoic evolution of the Roer Valley rift system integrated at European scale. Tectonophysics, 367, 101–126.

Moskalewicz D. & Sokołowski R.J., 2014. Kenozoiczne sekwencje f luwialne w klifie chłapowskim. [in:] Sokołowski R.J. (red.), Ewolucja środowisk sedymentacyjnych regionu Pobrzeża Kaszubskiego, Uniwersytet Gdański. Wydział Oceanografii i Geografii, Gdynia; Uniwersytet Warszawski. Biuro Promocji, Warszawa, 39–49.

Piwocki M. & Ziembińska-Tworzydło M., 1997. Neogene of the Polish Lowlands – lithostratigraphy and pollen-spore zones. Geological Quarterly, 41, 21–40.

Rajchl M. & Uličný D., 2005. Depositional record of an avulsive fluvial system controlled by peat compaction (Neogene, Most Basin, Czech Republic). Sedimentology, 52, 601–625.

Rajchl M., Uličný D. & Mach K., 2008. Interplay between tectonics and compaction in a rift-margin, lacustrine delta system: Miocene of the Eger Graben, Czech Republic. Sedimentology, 55, 1419 –1447.

Rudowski S., 1965. Geologia klifu Kępy Swarzewskiej. Rocznik Polskiego Towarzystwa Geologicznego, 35, 301–315.

Ryer T.A. & Langer A.W., 1980. Thickness change involved in the peat-to-coal transformation for a bituminous coal of Cretaceous age in central Utah. Journal of Sedimentary Petrology, 50, 987–992.

Schäfer A. & Utescher T., 2014. Origin, sediment fill, and sequence stratigraphy of the Cenozoic Lower Rhine Basin (Germany) interpreted from well logs. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165, 287–314.

Schäfer A., Utescher T., Klett M. & Valdivia-Manchego M., 2005. The Cenozoic Lower Rhine Basin – rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences, 94, 621–639.

Uścinowicz G., Jurys L. & Szarafin T., 2017. The development of unconsolidated sedimentary coastal cliffs (Pobrzeże Kaszubskie, Northern Poland). Geological Quarterly, 61, 491–501.

van Asselen S., Stouthamer E. & van Asch Th.W.J., 2009. Effects of peat compaction on delta evolution: a review on processes, responses, measuring and modelling. Earth Science Reviews, 92, 35–51.

Wagner M., 2007. Węglowe osady miocenu Kępy Swarzewskiej na wybrzeżu bałtyckim. Geologia, 33, 69–90.

Widera M., 2002. Próba wyznaczenia współczynnika konsolidacji torfów dla pokładów węgla brunatnego. Przegląd Geologiczny, 50, 42–48.

Widera M., 2012. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland. Geologos, 18, 1–11.

Widera M., 2013a. Changes of the lignite seam architecture – a case study from Polish lignite deposits. International Journal of Coal Geology, 114, 60–73.

Widera M., 2013b. Uwagi o wyznaczaniu współczynnika kompakcji ksylitów dla pierwszego środkowopolskiego pokładu węgla brunatnego w centralnej Polsce. Przegląd Geologiczny, 61, 304–310.

Widera M., 2015. Compaction of lignite: a review of methods and results. Acta Geologica Polonica, 65, 367–368.

Widera M., 2016. An overview of lithotype associations forming the exploited lignite seams in Poland. Geologos, 22, 213–225.

Widera M., Jachna-Filipczuk G., Kozula R. & Mazurek S., 2007. From peat bog to lignite seam: a new method to calculate the consolidation coefficient of lignite seams, Wielkopolska region in central Poland. International Journal of Earth Sciences, 96, 947–955.

Widera M., Stawikowski W. & Uścinowicz G., 2019. Paleogene-Neogene tectonic evolution of the lignite-rich Szamotuły Graben. Acta Geologica Polonica, 69. DOI: https://doi.org/10.24425/agp.2019.126439 [in press].