Paramagnetic properties of Cuban red mud at low temperatures

Main Article Content

Valentyna Shvets http://orcid.org/0000-0002-4530-1689

Keywords

iron ores, metals oxides, ESR, low temperatures

Abstract

The electron spin resonance (ESR) spectra of Cuban red mud have been measured at three different temperatures: 295 K, 150 K and 77 K. The broad absorption line with resonance fields ∼(1.7–1.8) kOe was observed at all temperatures with values of g-factor from 3.602 to 4.020. The temperature decrease resulted in an absorption line appearance with resonance fields of 3.252 kOe (g = 2.067) at 150 K and 3.339 kOe (g = 2.086) at 77 K. The ESR-signal amplitude with resonance fields ∼(1.7–1.8) kOe decreases and the ESR-signal amplitude in the field ∼3.3 kОе increases with reduction in temperature.

Downloads

Download data is not yet available.
Abstract 295 | PDF Downloads 220

References

Can M., Coşkun M. & Firat T., 2012. A comparative study of nanosized iron oxide particles: magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds, 542, 241–247, DOI: https://doi.org/10.1016/ j.jallcom.2012.07.091.

Carbone C., Di Benedetto F., Sangregorio C., Marescotti P., Pardi L. & Sorace L., 2008. Multifrequency EMR and Magnetic Characterization of Synthetic Powdered Hematite. Journal of Physical Chemistry C, 112, 27, 9988– 9995, DOI: https://doi.org/10.1021/jp712045s.

Carbone C., Di Benedetto F., Marescotti P., Sangregorio C., Sorace L., Lima N., Romanelli M., Lucchetti G. & Cipriani C., 2005. Natural Fe-oxide and oxyhydroxide nanoparticles: an EPR and SQUID investigation. Mineralogy and Petrology, 85, 1–2, 19–32.

Dobosz B., Krzyminiewski R., Koralewski M. & Hałupka-Bryl M., 2016. Computer enhancement of ESR spectra of magnetite nanoparticles. Journal of Magnetism and Magnetic Materials, 407, 114–121, DOI: https://doi. org/10.1016/j.jmmm.2016.01.058.

Drago R., 1977. Physical Methods in Chemistry. Saunders College Company, Philadelphia – London – Toronto.

Gich M., Frontera C., Roig A., Fontcuberta J., Molins E., Bellido N., Simon Ch. & Fleta C., 2006a. Magnetoelectric coupling in ε-Fe2O3 nanoparticles. Nanotechnology, 17, 3, 687–691.

Gich M., Frontera C., Roig A., Taboada E., Mollins E., Rechenberg H., Ardison J., Macedo W., Ritter C., Hardly V., Sort J., Skumryev V. & Nogués J., 2006b. Highand Low-Temperature Crystal and Magnetic Structures of ε-Fe2O3 and Their Correlation to Its Magnetic Properties. Chemistry of Materials, 18, 16, 3889–3897, DOI: https://doi.org/10.1021/cm060993l.

Kakazey M., Ivanova N., Sokolsky G. & Gonzales-Rodrigues J., 2001. Electron Paramagnetic Resonance of MnO2 powders. Electrochemical and Solid-state Letters, 4, 5, 1–4.

Linnikov O.D., Yatsenko S.P. & Sabirzyanov N.A, 1999. Sposob pererabotki krasnogo shlama. Patent RU 2140998 [Линников О.Д., Яценко С.П. & Сабирзянов Н.А., 1999. Способ переработки красного шлама. Патент России 2140998], [on-line:] http://www.findpatent.ru/ patent/214/2140998.html [access: 30.04.2018].

Nelson C.E., Proenza J.A., Lewis J.F. & López-Kramer J., 2011. The metallogenic evolution of the Greater Antilles. Geologica Acta, 9, 3–4, 229–264, DOI: https://doi. org/10.1344/105.000001741.

Özdemir Ö., Dunlop D. & Berquó T., 2008. Morin transition in hematite: Size dependence and thermal hysteresis. Geochemistry, Geophysics, Geosystem, 9, 10, 1–12, DOI: https://doi.org/10.1029/2008GC002110.

Palache C., Berman H. & Frondel C., 1944. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: Yale University, 1837–1892. Volume 1: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Lincoln (UK).

Pervushin N.G. & Pervushina V.P, 2011. Sposob pererabotki krasnykh shlamov. Patent RU 2428490 [Первушин Н.Г. & Первушина В.П., 2011. Способ переработки красных шламов. Патент России 2428490], [on-line:] http://www.findpatent.ru/patent/242/2428490.html [access: 30.04.2018].

Proenza J., Gervilla F., Melgarejo J.C. & Bodinier J.L., 1999. Aland Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba): consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94, 547–566.

Reddy B. & Frost R., 2005. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 61, 5, 1721–1728, DOI: https:// doi.org/10.1016/j.saa.2004.07.002.

Senn M., Wright J. & Attfield J., 2012. Charge order and threesite distortions in the Verwey structure of magnetite. Nature, 481, 7380, 173–176, DOI: https://doi.org/10.1038/nature10704.

Shvets V., Melnyk A., Trachevskyj V. & Gerasimchuk A., 2010. The investigation of the low magnetic iron ores by EPR and their component FeO by DFT. Journal of Molecular Structure THEOCHEM, 954, 1–3, 94–97, DOI: https://doi.org/doi.org/10.1016/j.theochem.2010.01.035.

Shvets V., Trachevskyj V. & Melnyk A., 2012. The properties of low magnetic iron ores at low temperatures. [in:] Hubicki Z. (red.), Nauka i przemysł: metody spektroskopowe w praktyce, nowe wyzwania i możliwości, Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin, 480–486.

Tolstokulakova A.V., Garmazov Yu.L., Zaydes S.A. & Turchanoniv V.K., 2009. Sposob pererabotki krasnykh shlamov. Patent RU 2360981 [Толстокулакова А.В., Гармазов Ю.Л., Зайдес С.А., Турчанинов В.К., 2009. Способ переработки красных шламов. Патент России 2360981], [on-line:] http://www.findpatent.ru/patent/ 236/2360981.html [access: 30.04.2018].

Verwey E., 1939. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature, 144, 327–328,DOI: https://doi.org/10.1038/144327b0.

Yu M., Liu X., Huo C.-F., Guo W., Cao D.-B., Peng Q., Dearden A. K., Gonzo X., Yang Y., Wang J., Jiao H., Li Y.-W. & Wen X.-D., 2016. When density functional approximation meet iron oxides. Journal of Chemical Theory and Computation, 12, 10, 5132–5144, DOI: https://doi.org/10.1021/acs. jctc.6b00640.