Petrogeothermal energy resources within low-temperature areas of Iceland

Main Article Content

Anna Sowiżdżał
Anna Drabik

Keywords

Iceland, geothermal energy, low-temperature area, static resources, geology, Enhanced Geothermal System (EGS), Hólmavík

Abstract

Iceland remains one of the leading countries in the field of the utilization of geothermal energy worldwide. Despite its knowledge and tremendous experience in the exploitation of mostly high-temperature geothermal energy resources (water and steam), it has been interested in the possibility of harnessing heat from hot rock formations with the implementation of the Enhanced Geothermal System (EGS). This paper presents the main outcomes of the feasibility study of EGS technology within the low-temperature area of the country. It includes broad geological research that constitutes the background for finding a suitable site for an EGS installation and to determine the local thermal parameters together with rock characteristics. To calculate the amount of heat stored within the preordained HDR formation and ascertain that the deployment of the EGS within the lowtemperature area of Hólmavík town (NW Iceland) is plausible, the term of static resources of energy was applied. Considering the geological issue, it emerged that within the low-temperature areas of Iceland, there are excellent lithological (mainly porous lava layers) as well as thermal conditions (relatively high heat flow and geothermal gradient values) for the implementation of EGS technology for providing heat for small district heating networks. The amount of energy stored within the designed rock formation turned out to be significant and more than sufficient to cover the energy demands of Hólmavík town. The authors also emphasize the importance of running several exchange programs between Polish and Icelandic research and academic centers, with the indication of possible benefits for the Polish geothermal energy sector.

Downloads

Download data is not yet available.
Abstract 651 | PDF Downloads 279

References

Axelsson G., Gunnlaugsson E., Jonasson T. & Olafsson M., 2010. Low-temperature geothermal utilisation in Iceland – Decades of experience. Geothermics, 39, 4, 329–338.

Bjornsson S., 2011. Geothermal Development and Research in Iceland. Information Brochure. Orkufstofnun, Reykjavik.

Brown D.W., Duchane D.V., Heineken G. & Hriscu V.T., 2012. The Enormous Potential of Hot Dry Rock Geothermal Energy. [in:] Mining the Earth’s Heat: Hot Dry Rock Geothermal Energy, Springer Science & Business Media, 17–44.

Bujakowski W., Barbacki A., Miecznik M., Pająk L., Skrzypczak R. & Sowiżdżał A., 2015. Modelling geothermal and operating parameters of EGS installations in the lower trassic sedimentary formations of the central Poland area. Renewable Energy, 80, 441–453.

Drabik A., Sowiżdżał A. & Tomaszewska B., 2016. Doświadczenia Islandii w zakresie wykorzystania niskotemperaturowych zasobów energii geotermalnej. Technika Poszukiwań Geologicznych. Geotermia. Zrownoważony Rozwój, 1, 111–120.

Gancarz M., 2015. A characterization of the geothermal potential of the Muschelkalk deposits’ location, with the prospective of its utilization in balneology and recreation (southern Poland). Geology, Geophysics & Environment, 41, 4, 333–342.

Górecki W. (red.) et al., 2006. Atlas zasobów geotermalnych formacji mezozoicznej na Niżu Polskim [Atlas of geothermal resources of mesozoic formations in the Polish Lowlands]. Akademia Górniczo-Hutnicza im. S. Staszica, Kraków.

Górecki W. & Hajto M., 2006. Klasyfikacje i metodyka oceny zasobów energii geotermalnej. [in:] Górecki W. (red.), Atlas zasobów geotermalnych formacji mezozoicznej na Niżu Polskim, Akademia Górniczo-Hutnicza im. S. Staszica, Kraków, 157–161.

Górecki W., Sowiżdżał A., Hajto M., Wachowicz-Pyzik A., 2015. Atlases of geothermal waters and energy resources in Poland. Environmental Earth Sciences, 74, 12, 7487– 7495.

Haenel R. & Staroste E., 1988. Atlas of geothermal resources in the European Community, Austria, and Switzerland. Verlag Th. Schaefer, Hannover, Germany.

Hurter S. & Haenel R. (eds.), 2002. Atlas of Geothermal Resources in Europe. Office for Official Publications of the European Communities, Brussel, Luxemburg.

ISOR – Iceland GeoSurvey, 2016. Official Project consultations. Reykjavik.

Korzec K., 2016. Hydrogeochemical characteristic of thermal waters in Bańska Niżna. Geology, Geophysics & Environment, 42, 1, 85–86.

Kranz K., 2006. Geothermal energy in Iceland. Technische Universitat Bergakademie, Institute of Hydrogeology, Freiberg, Germany, [on-line:]: http://www.geo.tufreiberg. de/oberseminar/os06_07/Kathrin%20Kranz. pdf [access: 20.10.2016].

Lacirignola M. & Blanc I., 2013. Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment. Renewable Energy, 50, 901–914.

Li H. & Svendsen S., 2012. Energy and exergy analysis of low temperature district heating network. Energy, 45, 1, 237– 246.

McDougall I., Kristjansson L. & Samundsson K., 1984. Magnetostratigraphy and geochronology of Northwest Iceland. Journal of Geophysical Research: Solid Earth, 88, B8, 7029–7060.

Muffler L.J.P. & Cataldi R., 1978. Methods for Regional Assessment of Geothermal Resources. Geothermics, 7, 2–4, 53–89.

Olasolo P., Juarez M.C., Morales M.P., D’Amico S. & Liarte I.A., 2016. Enhanced Geothermal Systems (EGS): A Review. Renewable and Sustainable Energy Reviews, 56, 133–144.

Orkustofnun, 2016. Orkutolur 2015. Orkustofnun, Reykjavik, [on-line:] http://os.is/gogn/os-onnur-rit/orkutolur_ 2015-islenska.pdf [access: 24.11.2016].

Ragnarsson A., 2015. Geothermal Development in Iceland 2010–2014. [in:] World Geothermal Congress, 16–24 April 2015, Australia-New Zealand: proceedings, International Geothermal Association, Melbourne, 1–15, [on-line:] https://www.geothermal-energy.org/pdf/IGAstandard/ WGC/2015/01077.pdf [access: 27.10.2016].

Samundsson K., 1979. Outline of the geology of Iceland. Jokull Journal, 29, 7–28.

Samundsson K., 1999. Jadhitaleit i Holmavikurhreppi. Orkustofnun, Reykjavik.

Samundsson K. & Bjornsson S., 2002. Krikjubolshreppur: Borholumalingar og tillogur um framhald. Orkustofnun, Reykjavik, [on-line:] http://os.is/gogn/Greinargerdir/ Grg-OS-2002/KS-2002-07.pdf [access: 17.10.2016].

Sanyal S.K., Morrow J.W., Butler J., Robertson-Tait A., 2007. Is EGS Commercially Feasible? Geothermal Resources Council Transactions, 31, 313–322.

Sowiżdżał, A., 2016. Possibilities of petrogeothermal energy resources utilization in central part of Poland. Applied Ecology and Environmental Research, 14, 2, 555–574.

Sowiżdżał A. & Kaczmarczyk M., 2016. Analysis of thermal parameters of Triassic, Permian and Carboniferous sedimentary rocks in central Poland. Geological Journal, 51, 1, 65–76.

Sowiżdżał A. & Semyrka R., 2016. Analyses of permeability and porosity of sedimentary rocks in terms of unconventional geothermal resource explorations in Poland. Geologos, 22, 2, 149–163.

Sowiżdżał A., Papiernik B., Machowski G. & Hajto M., 2013. Characterization of petrophysical parameters of the Lower Triassic deposits in prospective location for Enhanced Geothermal System (central Poland). Geological Quarterly, 57, 4, 729–744.

Tester J., 2006. Energy recovered from Enhanced/Engineered Geothermal Systems (EGS). Assessment of impact for the US by 2050. DOE EGS Program Review, Massachusetts Institute of Technology, Colorado 18–19 July 2006.

Thordarson T., 2012. Outline of the geology of Iceland. [in:] Volcanism and the atmosphere: AGU Chapman Conference on Volcanism and the Earth’s Atmosphere; Selfoss, Iceland, 10–16 June 2012, [on-line:] http://www.agu.org/ meetings/chapman/2012/bcall/pdf/Chapman_Outline_ of_Geology_of_Iceland.pdf [access: 4.10.2016].

Tomaszewska B. & Hołojuch G., 2011. The pilot of geothermal water desalination installation in Poland. Geology, Geophysics & Environment, 37, 2, 313-321.

Tomasson J. & Arason P., 2000. Evidence for thermal mining in low-temperature geothermal areas in Iceland. Geothermics, 29, 6, 723-735.

Wójcicki A., Sowiżdżał A. & Bujakowski W. (red.) et al., 2013. Ocena potencjału, bilansu cieplnego i perspektywicznych struktur geologicznych dla potrzeb zamkniętych systemów geotermicznych (hot dry rocks) w Polsce. Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa – Kraków.